ERLANG

Erlang/OTP System Documentation

Copyright © 1997-2020 Ericsson AB. All Rights Reserved.
Erlang/OTP System Documentation 10.6.4
February 20, 2020

Copyright © 1997-2020 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

February 20, 2020

1.1 Deprecations

1 General Information

1.1 Deprecations

1.1.1 Introduction

Thisdocument aimto list al deprecated functionality in Erlang/OTP. It wasintroduced as of OTP 22, and have not yet
been updated with all old deprecations. Deprecations made in other parts of the documentation are of course still valid.
For more information regarding the strategy regarding deprecations see the documentation of Support, Compatibility,
Deprecations, and Removal.

1.1.2 OTP 22

VxWorks Support

Some parts of OTP has had limited VxWorks support, such as for exampleer | _i nt er f ace. This support is now
deprecated and has al so been scheduled for removal.

Legacy parts of erl_interface

Theold legacy er| _i nt er f ace library (functions with prefix er | _) is deprecated as of OTP 22. These parts of
erl _interface hasbeeninformally deprecated for a very long time. Y ou typically want to replace the usage of
theer| _i nt er f ace library with the use of theei library which alsois part of theer | _i nt er f ace application.
Theoldlegacy er| _i nt er f ace library has also been scheduled for removal.

System Events

The format of "System Events" as defined in the man page for sys has been clarified and cleaned up. Due to this,
code that relied on the internal badly documented previous (before this change) format of OTP's "System Events’,
needs to be changed.

Inthewake of thisthefunction sys:get_debug/3 that returns datawith undocumented and internal format (and therefore
ispractically useless) has been deprecated, and anew function sys:get_log/1 has been added, that hopefully does what
the deprecated function was intended for.

1.1.3 OTP 18

erlang:now()

New time functionality and a new time APl was introduced. For more information see the Time and Time
Correction chapter in the ERTS User's guide and specifically the Dos and Donts section on how to replace usage of
erl ang: now() .

1.2 Scheduled for Removal
1.2.1 Introduction

This document list all functionality in Erlang/OTP that currently are scheduled for removal. For more information
regarding the strategy regarding removal of functionality see the documentation of Support, Compatibility,
Deprecations, and Removal.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 1

1.2 Scheduled for Removal

1.2.2 OTP 23

VxWorks Support

Some parts of OTP has had limited VxWorks support, such as for exampleer | _i nt er f ace. This support will be
removed as of OTP 23. Thislimited support was formally deprecated as of OTP 22

Legacy parts of erl_interface

Theold legacy er | _i nt er f ace library (functions with prefix er | _) will be removed as of OTP 23. These parts
of erl _i nt er f ace hasbeen informally deprecated for a very long time, and was formally deprecated in OTP 22.
You typically want to replace the usage of theer | _i nt er f ace library with the use of the ei library which also
ispart of theer | _i nt er f ace application.

2 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.1 Installing the Binary Release

2 Installation Guide

This section describes how to install Erlang/OTP on UNIX and Windows.

2.1 Installing the Binary Release
2.1.1 Windows

The system is delivered as a Windows I nstaller executable. Get it from http://www.erlang.org/download.html

Installing
Theinstallation procedure is automated. Double-click the . exe fileicon and follow the instructions.
Verifying
e Start Erlang/OTP by double-clicking on the Erlang shortcut icon on the desktop.
Expect a command-line window to pop up with an output looking something like this:

Erlang/0TP 17 [erts-6.0] [64-bit] [smp:2:2]

Eshell V6.0 (abort with "G)
1>

» Exit by entering the command hal t () .

2> halt().

This closes the Erlang/OTP shell.

2.2 Building and Installing Erlang/OTP

2.2.1 Introduction

This document describes how to build and install Erlang/OTP-22. Erlang/OTP should be possible to build from source
on any Unix/Linux system, including OS X. Y ou are advised to read the whole document before attempting to build
and install Erlang/OTP.

The source code can be downloaded from the official site of Erlang/OTP or GitHub.

e http://Iwww.erlang.org
« https://github.com/erlang/otp

2.2.2 Required Utilities
These are the tools you need in order to unpack and build Erlang/OTP.

Unpacking
e GNU unzip, or amodern uncompress.
* A TAR program that understands the GNU TAR format for long filenames.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 3

href
href

2.2 Building and Installing Erlang/OTP

Building

« GNU nmake

e Compiler -- GNU C Compiler, gcc or the C compiler frontend for LLVM, ¢l ang.
* Pel5

e« GNU m -- If HiPE (native code) support is enabled. HiPE can be disabled using - - di sabl e- hi pe

* ncurses,terncap,ortermib -- The development headers and libraries are needed, often known as
ncur ses-devel .Use--w t hout - t er ntap to build without any of these libraries. Note that in this case
only the old shell (without any line editing) can be used.

» sed -- Stream Editor for basic text transformation.

Building in Git

 GNU aut oconf of at least version 2.59. Note that aut oconf is not needed when building an unmodified
version of the released source.

Building on OS X
e Xcode -- Download and install viathe Mac App Store. Read about Building on a Mac before proceeding.

Installing
« Aninstall program that can take multiple file names.

2.2.3 Optional Utilities

Some applications are automatically skipped if the dependencies aren't met. Hereis alist of utilities needed for those
applications. Y ou will also find the utilities needed for building the documentation.

Building

e OpenSSL -- The opensourcetoolkit for Secure Socket Layer and Transport Layer Security. Required for building
the application cr ypt o. Further, ssl and ssh require a working crypto application and will also be skipped
if OpenSSL ismissing. The publ i c_key application is available without cr ypt o, but the functionality will
be very limited.

The development package of OpenSSL including the header files are needed as well as the binary command
program openssl . At least version 0.9.8 of OpenSSL is required. Read more and download from http://
www.openssl.org.

* Oracle Java SE JDK -- The Java Development Kit (Standard Edition). Required for building the application
jinterface.Atleast version 1.6.0 of the JDK isrequired.

Download from http://www.or acle.com/technetwor k/java/javase/downloads. We have also tested with IBM's
JDK 1.6.0.

« fl ex -- Headersand libraries are needed to build the flex scanner for the megaco application on Unix/Linux.

* wxWidgets -- Toolkit for GUI applications. Required for building the wx application. At least version 3.0 of
wxWidgetsis required.

Download from http://sour cefor ge.net/projects/wxwindows/files/3.0.0/ or get it from GitHub: https://
github.com/wxWidgets/wxWidgets

Further instructions on wxWidgets, read Building with wxErlang.
Building Documentation
e Xxsltproc -- Acommand line XSLT processor.

A tool for applying XSLT stylesheets to XML documents. Download xsltproc from http://xmlsoft.org/XSLT/
xdtproc2.html.

4 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href
href
href
href
href
href
href

2.2 Building and Installing Erlang/OTP

» fop -- Apache FOP print formatter (requires Java). Can be downloaded from http://xmlgraphics.apache.or g/
fop.
2.2.4 How to Build and Install Erlang/OTP

The following instructions are for building the released source tar ball.

The variable $ERL_TOP will be mentioned a lot of times. It refers to the top directory in the source tree. More
information about $ERL_ TOP can be found in the make and $ERL_TOP section below. If you are building in git you
probably want to take alook at the Building in Git section below before proceeding.

Unpacking

Start by unpacking the Erlang/OTP distribution file with your GNU compatible TAR program.
$ tar -zxf otp src 22.2.7.tar.gz # Assuming bash/sh

Now change directory into the base directory and set the SERL_ TOP variable.

$ cd otp src 22.2.7
$ export ERL TOP="pwd" # Assuming bash/sh

Configuring
Run the following commands to configure the build:

$./configure [options]

If you arebuilding Erlang/OTPfrom git youwill needtorun. / ot p_bui | d aut oconf togeneratetheconfigure
scripts.

By default, Erlang/OTP release will beinstalledin/ usr/ |1 ocal / { bi n, I i b/ er| ang} . If you for instance don't
have the permission to install in the standard location, you can install Erlang/OTP somewhere else. For example,
to ingtall in /opt/erlang/22.2.7/{bin,libl/erlang}, use the --prefix=/opt/erlang/22.2.7
option.

On some platforms Perl may behave strangely if certain locales are set. If you get errors when building, try setting
the LANG variable:

$ export LANG=C # Assuming bash/sh
Building
Build the Erlang/OTP release.

$ make

Testing

Before installation you should test whether your build isworking properly by running our smoke test. The smoke test
isasubset of the complete Erlang/OTP test suites. First you will need to build and release the test suites.

$ make release tests

This creates an additional folder in $ERL_TOP/ r el ease calledt est s. Now, it'stime to start the smoke test.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 5

href
href
href

2.2 Building and Installing Erlang/OTP

$ cd release/tests/test server
$ $ERL TOP/bin/erl -s ts install -s ts smoke test batch -s init stop

To verify that everything is ok you should open $ERL_TOP/ r el ease/ tests/test _server/index. htm
in your web browser and make sure that there are zero failed test cases.

On buildswithout cr ypt 0, ssl and ssh thereisafailed test case for undefined functions. Verify that the failed
test case log only shows calls to skipped applications.

Installing

You are now ready to install the Erlang/OTP release! The following command will install the release on your system.

$ make install

Running

Y ou should now have aworking release of Erlang/OTP! Jump to System Principlesfor instructions on running Erlang/
OTP.

How to Build the Documentation
Make sure you're in the top directory in the source tree.
$ cd $ERL TOP

If you have just built Erlang/OTP in the current source tree, you have already ran conf i gur e and do not need to
do this again; otherwise, runconf i gur e.

$./configure [Configure Args]

When building the documentation you need a full Erlang/OTP-22.2.7 system in the SPATH.
$ export PATH=$ERL TOP/bin:$PATH # Assuming bash/sh

For the FOP print formatter, two steps must be taken:

» Adding the location of your installation of f op in $FOP_HOVE.

$ export FOP_HOME=/path/to/fop/dir # Assuming bash/sh

e Addingthef op script (in $FOP_HOVE) to your $PATH, either by adding $FOP_HOVE to $PATH, or by copying
thef op script to adirectory already in your $PATH.

Build the documentation.
$ make docs

Build Issues

We have sometimes experienced problemswith Oracle'sj ava running out of memory when running f op. Increasing
the amount of memory available as follows has in our case solved the problem.

$ export FOP_OPTS="-Xmx<Installed amount of RAM in MB>m"

More information can be found at
e http://xmlgraphics.apache.or g/fop/0.95/r unning.html#memory.

6 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

2.2 Building and Installing Erlang/OTP

How to Install the Documentation
The documentation can be installed either using thei nst al | - docs target, or using ther el ease_docs target.

* If you have installed Erlang/OTP using the i nst al | target, install the documentation using the i nst al | -
docs target. Install locations determined by conf i gur e will be used. $DESTDI R can be used the same way
aswhen doing make install.

$ make install-docs

« Ifyouhaveinstalled Erlang/OTPusingther el ease target, install the documentationusingther el ease_docs
target. You typically want to use the same RELEASE _ROOT aswhen invoking meke r el ease.

$ make release docs RELEASE ROOT=<release dir>

Accessing the Documentation
After installation you can access the documentation by

e Reading man pages. Make surethat er | isreferring to the installed version. For example/ usr/ | ocal / bi n/
er| . Try viewing at the man page for Mnesia

$ erl -man mnesia

* Browsing the html pagesby loading thepage/ usr /1 ocal / 1'i b/ er| ang/ doc/ erl ang/ i ndex. ht m or
<BaseDir>/1i b/ erl ang/ doc/ erl ang/ i ndex. ht m if the prefix option has been used.

How to Install the Pre-formatted Documentation
Pre-formatted html documentation and man pages can be downloaded from
* http://www.erlang.or g/download.html.

Extract the html archive in the installation directory.

$ cd <ReleaseDir>
$ tar -zxf otp_html 22.2.7.tar.gz

Forerl -man <page> towork the Unix manual pages haveto beinstalled in the same way, i.e.

$ cd <ReleaseDir>
$ tar -zxf otp man 22.2.7.tar.gz

Where<Rel easeDir > is

e <PrefixDir>/1ib/erlangifyouhaveinstaled Erlang/OTP usingmake i nstal | .

* S$DESTDI R<PrefixDir>/1ib/erl ang if you haveinstaled Erlang/OTP using make i nstal |
DESTDI R=<Tnpl nstal | Di r >.

 RELEASE ROOT if you haveinstalled using make rel ease RELEASE ROOT=<Rel easeDi r>.

2.2.5 Advanced configuration and build of Erlang/OTP

If youwant to tailor your Erlang/OTP build and install ation, please read on for detailed information about theindividual
steps.

make and $ERL_TOP

All the makefiles in the entire directory tree use the environment variable ERL_ TOP to find the absolute path of the
installation. The conf i gur e script will figure this out and set it in the top level Makefile (which, when building, it
will pass on). However, when developing it is sometimes convenient to be able to run make in a subdirectory. To do
this you must set the ERL_ TOP variable before you run make.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 7

href
href
href

2.2 Building and Installing Erlang/OTP

For example, assume your GNU make program is called mak e and you want to rebuild the application STDLI B, then
you could do:

$ cd lib/stdlib; env ERL_TOP=<Dir> make
where <Di r > would be what you find ERL_ TOP is set to in the top level Makefile.

otp_build vs configure/make

Building Erlang/OTP can be done either by using the $ERL_TOP/ ot p_bui | d script, or by invoking $ERL_TOP/

confi gure and make directly. Building using ot p_bui | d is easier since it involves fewer steps, but the
ot p_bui I d build procedure is not as flexible as the conf i gur e/make build procedure. The binary releases for
Windows that we deliver are built using ot p_bui I d.

Configuring
The configure script is created by the GNU autoconf utility, which checks for system specific features and then creates
anumber of makefiles.

The configure script alows you to customize a number of parameters; type ./ configure --help or./
configure --hel p=recursive for details. . / confi gure --hel p=recursive will give help for all
confi gur e scriptsin al applications.

One of the things you can specify iswhere Erlang/OTP should be installed. By default Erlang/OTP will beinstalled in
lusr/local/{bin,Iib/erlang}.Tokeepthesame structure but install in a different place, <Di r > say, use
the- - prefi x argument likethis: . / confi gure --prefix=<Dir>.

Some of the available conf i gur e options are:

e --prefix=PATH- Specify installation prefix.

*+ --disable-parallel-configure - Disableparallel execution of conf i gur e scripts (parallel
execution is enabled by default)

e --{enabl e, di sabl e} -kernel - pol | -Kernel poll support (enabled by default if possible)

« --{enabl e, di sabl e} - hi pe - HiPE support (enabled by default on supported platforms)

e --{enabl e, di sabl e} - f p- except i ons - Floating point exceptions (an optimization for floating point
operations). The default differs depending on operating system and hardware platform. Note that by enabling
this you might get a seemingly working system that sometimes fail on floating point operations.

e --enabl e- n64- bui | d - Build 64-bit binaries using the - n64 flagto (g) cc

e --enabl e- nB2- bui | d - Build 32-bit binariesusing the - n82 flagto (g) cc

e --wth-assuned-cache-1|ine-size=SI ZE - Set assumed cache-line sizein bytes. Default is 64. Valid
values are powers of two between and including 16 and 8192. The runtime system use this value in order to

try to avoid false sharing. A too large value wastes memory. A to small value will increase the amount of false
sharing.

e --{with,w thout}-terntap - termcap (without impliesthat only the old Erlang shell can be used)

e --wth-javac=JAVAC - Specify Javacompiler to use

o --{with,w thout}-javac - Javacompiler (without impliesthat thej i nt er f ace application won't be
built)

e --{enabl e, di sabl e} -dynani c-ssl -1i b - Dynamic OpenSSL libraries

e --{enabl e, disable}-builtin-zlib -Usethebuilt-in source for zlib.

e --{with,w thout}-ssl -OpenSSL (without impliesthat thecr ypt 0, ssh, and ssl won't be built)

e --w th-ssl =PATH- Specify location of OpenSSL include and lib

e --wth-ssl-incl =PATH- Location of OpenSSL i ncl ude directory, if different than specified by - -
wi t h- ssl =PATH

8 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.2 Building and Installing Erlang/OTP

e --with-ssl-rpat h=yes| no| PATHS - Runtime library path for OpenSSL. Default isyes, which equates
to a number of standard locations. If no, then no runtime library paths will be used. Anything else should be a
comma separated list of paths.

e --with-libatom c_ops=PATH- Usethel i bat om c_ops library for atomic memory accesses. If
conf i gur e should inform you about no native atomic implementation available, you typically want to try
usingthel i bat om c_ops library. It can be downloaded from https:.//github.com/ivmai/libatomic_ops/.

e --disable-snp-require-native-atom cs - By default conf i gur e will fail if an SMP runtime
system is about to be built, and no implementation for native atomic memory accesses can be found. If
this happens, you are encouraged to find a native atomic implementation that can be used, e.g., using
| i bat omi c_ops, but by passing - - di sabl e-snp-requi re-native-atom cs you can build using a
fallback implementation based on mutexes or spinlocks. Performance of the SMP runtime system will however
suffer immensely without an implementation for native atomic memory accesses.

e ~--enable-static-{nifs,drivers} - Toallow usage of nifsand drivers on OSsthat do not
support dynamic linking of librariesit is possible to statically link nifs and drivers with the main Erlang
VM binary. Thisis done by passing a comma separated list to the archives that you want to statically link.
e.g.--enabl e-stati c-ni fs=/ hone/ $USER/ my_ni f . a. The path has to be absolute and the
name of the archive has to be the same as the module, i.e. ny_ni f inthe example above. Thisisalso true
for drivers, but then it is the driver name that has to be the same as the filename. Y ou @ so have to define
STATI C_ERLANG { NI F, DRI VER} when compiling the .o files for the nif/driver. If your nif/driver depends
on some other dynamic library, you now have to link that to the Erlang VM binary. Thisis easily achieved by
passing L1 BS=-1 | i bnane to configure.

e --Wwithout- $app - By default al applicationsin Erlang/OTP will beincluded in arelease. If thisis not
wanted it is possible to specify that Erlang/OTP should be compiled without one or more applications, i.e. - -
wi t hout - wx. There is no automatic dependency handling between applications. If you disable an application
that another application depends on, you aso have to disable the dependant application.

e --enabl e-gettineofday-as-os-systemtine - Forceusageof getti meof day() for OS system
time.

e --enabl e-prefer-el apsed-nonot oni c-ti nme-duri ng- suspend - Prefer an OS monotonic time
source with elapsed time during suspend.

e --disabl e-prefer-el apsed-nonot oni c-ti nme-during-suspend - Do not prefer an OS
monotonic time source with elapsed time during suspend.

e --wth-cl ock-resol uti on=hi gh| | ow- Try tofind clock sources for OS system time, and OS

monatonic time with higher or lower resolution than chosen by default. Note that both alternatives may have a
negative impact on the performance and scalability compared to the default clock sources chosen.

e --disabl e-saved- conpi | e-ti nme - Disable saving of compile date and time in the emulator binary.
If you or your system has special requirements please read the Makef i | e for additional configuration information.
Atomic Memory Operations and the VM

The VM with SMP support makes quite a heavy use of atomic memory operations. An implementation providing
native atomic memory operations is therefore very important when building Erlang/OTP. By default the VM will
refuse to build if native atomic memory operations are not available.

Erlang/OTP itself provides implementations of native atomic memory operations that can be used when compiling
with a gcc compatible compiler for 32/64-bit x86, 32/64-bit SPARC V9, 32-bit PowerPC, or 32-bit Tile. When
compiling with agcc compatible compiler for other architectures, the VM may be able to make use of native atomic
operationsusingthe __at omni ¢_* builtins (may be available when using agcc of at least version 4.7) and/or using
the __sync_* builtins (may be available when using agcc of at least version 4.1). If only thegcc's __sync_*
builtins are available, the performance will suffer. Such a configuration should only be used as a last resort. When
compiling on Windows using a MicroSoft Visual C++ compiler native atomic memory operations are provided by
Windows APIs.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 9

href

2.2 Building and Installing Erlang/OTP

Native atomic implementation in the order preferred:

e Theimplementation provided by Erlang/OTP.

* TheAPI provided by Windows.

e Theimplementation based onthegcc __at omi c_* builtins.

» If none of the above are available for your architecture/compiler, you are recommended to build and install
libatomic_ops before building Erlang/OTP. Thel i bat o ¢_ops library provides native atomic memory
operations for avariety of architectures and compilers. When building Erlang/OTP you need to inform the build
system of wherethel i bat oni c¢_ops library isinstalled usingthe- - wi t h- | i bat omi ¢_ops=PATH
confi gur e switch.

e Asalast resort, the implementation solely based onthegcc __sync_* builtins. Thiswill however cause lots
of expensive and unnecessary memory barrier instructions to beissued. That is, performance will suffer. The
conf i gur e script will warn at the end of its execution if it cannot find any other alternative than this.

Building
Building Erlang/OTP on arelatively fast computer takes approximately 5 minutes. To speed it up, you can utilize
parallel make with the - j <num _j obs> option.

$ export MAKEFLAGS=-j8 # Assuming bash/sh
$ make

If you've upgraded the source with a patch you may need to clean up from previous builds before the new build. Make
sure to read the Pre-built Source Release section below before doing anake cl ean.

Within Git

When building in a Git working directory you also have to have a GNU aut oconf of at least version 2.59 on your
system, because you need to generate the conf i gur e scripts before you can start building.

The conf i gur e scripts are generated by invoking . / ot p_bui | d aut oconf inthe $ERL_TOR directory. The
conf i gur e scripts aso have to be regenerated when aconf i gure. i n or acl ocal . n4 file has been modified.
Note that when checking out abranch aconfi gure. i n or acl ocal . n4 file may change content, and you may
therefore have to regenerate the conf i gur e scripts when checking out a branch. Regenerated conf i gur e scripts
imply that you have to run conf i gur e and build again.

Running. / ot p_bui | d aut oconf isnot needed when building an unmodified version of the released source. ‘

Other useful information can be found at our GitHub wiki:
* http://wiki.github.com/erlang/otp
0OS X (Darwin)

Make sure that the command host nane returns a valid fully qualified host name (this is configured in / et c/
host conf i g). Otherwise you might experience problems when running distributed systems.

If you develop linked-in drivers (shared library) you need to link using gcc and the flags - bundl e -
flat_nanespace -undefined suppress. Youalsoinclude-f no- conmon in CFLAGS when compiling.
Use. so asthelibrary suffix.

If you have X code 4.3, or later, you will also need to download "Command Line Tools' viathe Downloads preference
panein Xcode.

10 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href

2.2 Building and Installing Erlang/OTP

Building with wxErlang

If you want to build the wx application, you will need to get wxWidgets-3.0 (WwxW dget s- 3. 0. 3. tar. bz2 from
https://github.com/wxWidgetswxWidgets/r eleases/download/v3.0.3/wxWidgets-3.0.3.tar .bz2) or get it from
github with bug fixes:

$ git clone --branch WX 3 0 BRANCH git@github.com:wxWidgets/wxWidgets.git

The wxWidgets-3.1 version should also work if 2.8 compatibility is enabled, add - - enabl e- conpat 28 to
configure commands below.

Configure and build wxWidgets (shared library on linux):

$./configure --prefix=/usr/local
$ make && sudo make install
$ export PATH=/usr/local/bin:$PATH

Configure and build wxWidgets (static library on linux):

$ export CFLAGS=-fPIC

$ export CXXFLAGS=-fPIC

$./configure --prefix=/usr/local --disable-shared
$ make && sudo make install

$ export PATH=/usr/local/bin:$PATH

Configure and build wxWidgets (on Mavericks - 10.9):

$./configure --with-cocoa --prefix=/usr/local

or without support for old versions and with static libs

$./configure --with-cocoa --prefix=/usr/local --with-macosx-version-min=10.9 --disable-shared
$ make

$ sudo make install

$ export PATH=/usr/local/bin:$PATH

Check that you got the correct wx-config

$ which wx-config && wx-config --version-full
Build Erlang/OTP

$ export PATH=/usr/local/bin:$PATH
$ cd $ERL TOP

$./configure

$ make

$ sudo make install

Pre-built Source Release

The sourcereleaseisdelivered with alot of platform independent build results already pre-built. If you want to remove
these pre-built files, invoke . / ot p_buil d renpbve_prebuilt _fil es fromthe $SERL_TOP directory. After
you have done this, you can build exactly the same way as before, but the build process will take a much longer time.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 11

href

2.2 Building and Installing Erlang/OTP

Doing make cl ean in an arbitrary directory of the source tree, may remove files needed for bootstrapping the
build.

Doing . / ot p_bui | d save_boot st rap from the $ERL_TOP directory before doing make cl ean will
ensure that it will be possible to build after doing make cl ean../otp_buil d save_boot strap will be
invoked automatically when make isinvoked from $ERL_ TOP with either thecl ean target, or the default target.
Itisalso automatically invokedif . / ot p_bui | d renmove_prebuilt _fil es isinvoked.

If you need to verify the bootstrap beam files match the provided source files, use ./ ot p_build
updat e_pri mary to create anew commit that contains differences, if any exist.

How to Build a Debug Enabled Erlang RunTime System

After completing all the normal building steps described above a debug enabled runtime system can be built. To do
this you have to change directory to SERL_TOP/ er t s/ emul at or and execute:

$ (cd $ERL TOP/erts/emulator && make debug)

This will produce a beam.smp.debug executable. The file are installed along side with the normal (opt) version
beam snp.

To start the debug enabled runtime system execute:
$ $ERL TOP/bin/cerl -debug

The debug enabled runtime system features lock violation checking, assert checking and various sanity checksto help
adeveloper ensure correctness. Some of these features can be enabled on a normal beam using appropriate configure
options.

There are other types of runtime systems that can be built as well using the similar steps just described.
$ (cd $ERL TOP/erts/emulator && make $TYPE)

where $TYPE is opt, gcov, gpr of , debug, val gri nd, or | cnt . These different beam types are useful for
debugging and profiling purposes.

Installing

e Staged install using DESTDIR. You can perform the install phase in atemporary directory and later move the
installation into its correct location by use of the DESTDI Rvariable:

$ make DESTDIR=<tmp install dir> install

The installation will be created in a location prefixed by $DESTDI R. It can, however, not be run from there.
It needs to be moved into the correct location before it can be run. If DESTDI R have not been set but
| NSTALL_PREFI X has been set, DESTDI Rwill be setto | NSTALL_PREFI X. Notethat | NSTALL_PREFI X
in pre R13B04 was buggy and behaved as EXTRA PREFI X (see below). There are lots of areas of use for an
installation procedure using DESTDI R, e.g. when creating a package, cross compiling, etc. Here is an example
where the installation should be located under / opt / | ocal :

12 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

2.2 Building and Installing Erlang/OTP

$./configure --prefix=/opt/local
make
make DESTDIR=/tmp/erlang-build install
cd /tmp/erlang-build/opt/local

gnu-tar is used in this example
tar -zcf /home/me/my-erlang-build.tgz *
su -
Password: *x***
$ cd /opt/local
$ tar -zxf /home/me/my-erlang-build.tgz

#H A A A A A

Install using ther el ease target. Instead of doing make i nstal | you can create the installation in whatever
directory you like using the r el ease target and run the | nst al | script yourself. RELEASE ROOT is used
for specifying the directory where the installation should be created. This is what by default ends up under /
usr/local /lib/erlangifyoudotheinstall using make i nstal | .All instalation paths provided in the
confi gur e phaseareignored, aswell asDESTDI R, and | NSTALL_PREFI X. If you want linksfrom a specific
bi n directory to the installation you have to set those up yourself. An example where Erlang/OTP should be
located at / horre/ me/ OTP:

$./configure

$ make

$ make RELEASE_ROOT=/home/me/OTP release
$ cd /home/me/0TP

$./Install -minimal /home/me/OTP
$ mkdir -p /home/me/bin
$ cd /home/me/bin

$ In -s /home/me/0TP/bin/erl erl

$ In -s /home/me/0TP/bin/erlc erlc

$ In -s /home/me/0TP/bin/escript escript

Thel nst al | script should currently be invoked as followsin the directory where it resides (the top directory):
$./Install [-cross] [-minimal|-sasl] <ERL _ROOT>

where:

e« -mni nal Createsan installation that starts up a minimal amount of applications, i.e., only ker nel and
stdl i b are started. The minimal system is normally enough, and iswhat make i nstal | uses.

e -sasl Createsaninstalation that also starts up the sas| application.
e -cross For cross compilation. Informsthe install script that it is run on the build machine.
e <ERL_RQOOT> - The absolute path to the Erlang installation to use at run time. Thisis often the same asthe

current working directory, but does not have to be. It can follow any other path through the file system to
the same directory.

If neither - m ni mal , nor - sasl is passed as argument you will be prompted.

Testinstall using EXTRA_PREFI X. The content of the EXTRA _PREFI X variablewill prefix al installation paths
when doing nake i nst al | . Notethat EXTRA PREFI Xissimilar to DESTDI R, but it does not have the same
effect as DESTDI R. The installation can and have to be run from the location specified by EXTRA PREFI X.
That is, it can be useful if you want to try the system out, running test suites, etc, before doing the real install
without EXTRA PREFI X.

Symbolic Links in --bindir

When doing make i nst al | and the default installation prefix is used, relative symbolic links will be created from
/usr/ | ocal / bi ntoal public Erlang/OTP executablesin/ usr /1 ocal /1i b/ er| ang/ bi n. Theinstalation
phase will try to create relative symbolic links aslong as - - bi ndi r and the Erlang bin directory, located under - -
I i bdi r, both have - - exec- pr ef i x as prefix. Where - - exec- prefi x defaultsto - - prefi x. --prefix,

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 13

2.2 Building and Installing Erlang/OTP

--exec-prefix,--bindir,and--1i bdir areal argumentsthat can bepassedtoconfi gur e. Onecanforce
relative, or absolute links by passing Bl NDI R_SYML_I NKS=r el at i ve| absol ut e asargumentsto make during
theinstall phase. Note that such arequest might cause afailure if the request cannot be satisfied.
Running
Using HiPE
HiPE supports the following system configurations:
* x86: All 32-bit and 64-bit mode processors should work.
* Linux: Fedora Coreis supported. Both 32-bit and 64-bit modes are supported.

NPTL glibcis strongly preferred, or a LinuxThreads glibc configured for "floating stacks'. Old non-floating
stacks glibcs have a fundamental problem that makes HiPE support and threads support mutually exclusive.

» Solaris. Solaris 10 (32-bit and 64-hit) and 9 (32-bit) are supported. The build requiresaversion of the GNU C
compiler (gec) that has been configured to use the GNU assembler (gas). Sun's x86 assembler isemphatically
not supported.

* FreeBSD: FreeBSD 6.1 and 6.2 in 32-hit and 64-bit modes should work.
e OS X/Darwin: Darwin 9.8.0 in 32-bit mode should work.

e PowerPC: All 32-hit 6xx/7xx(G3)/74xx(G4) processors should work. 32-bit mode on 970 (G5) and POWERS
processors should work.

e Linux (Yellow Dog) and OS X 10.4 are supported.
* SPARC: All UltraSPARC processors running 32-bit user code should work.

e Solaris9issupported. The build requiresagcc that has been configured to use Sun's assembler and linker.
Using the GNU assembler but Sun's linker has been known to cause problems.

e Linux (Aurora) is supported.
« ARM: ARMV5TE (i.e. XScale) processors should work. Both big-endian and little-endian modes are supported.

e Linuxissupported.
HiPE is automatically enabled on the following systems:

e X86 in 32-bit mode: Linux, Solaris, FreeBSD
* X86 in 64-bit mode: Linux, Solaris, FreeBSD
e PowerPC: Linux, Mac OSX

e SPARC: Linux

e ARM: Linux

On other supported systems, see Advanced Configure on how to enable HiPE.

If you are running on a platform supporting HiPE and if you have not disabled HiPE, you can compile a module into
native code like this from the Erlang shell:

1> c(Module, native).
or

1> c(Module, [native|OtherOptions]).
Using the erlc program, write like this

$ erlc +native Module.erl

The native code will be placed into the beam file and automatically loaded when the beam file is |oaded.

14 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Cross Compiling Erlang/OTP

To add hipe options, write like this from the Erlang shell:
1> c(Module, [native,{hipe,HipeOptions}|MoreOptions]).
Use hi pe: hel p_opti ons/ 0 to print out the available options.

1> hipe:help options().

2.3 Cross Compiling Erlang/OTP

Table of Contents

e Introduction
e otp_build Versus configure/make
* Cross Configuration
* What can be Cross Compiled?
e Compatibility
e Patches
» Build and Install Procedure
* Building With configure/make Directly
e Building a Bootstrap System
e CrossBuilding the System
* Installing
e Installing Using Paths Determined by configure
e Installing Manually
e Building With the otp_build Script
e Building and Installing the Documentation
e Testing the cross compiled system
e Currently Used Configuration Variables
* Variablesfor otp_build Only
e Cross Compiler and Other Tools
e Dynamic Erlang Driver Linking
e LargeFile Support
e Other Tools
» Cross System Root Locations
e Optional Feature, and Bug Tests

2.3.1 Introduction

This document describes how to cross compile Erlang/OTP-22. Y ou are advised to read the whole document before
attempting to cross compile Erlang/OTP. However, before reading this document, you should read the $ERL_TOP/
HOWTO/INSTALL.md document which describes building and installing Erlang/OTP in general. $ERL_TCOP is the
top directory in the source tree.

otp_build Versus configure/make

Building Erlang/OTP can be done either by using the $ERL_TOP/ ot p_bui | d script, or by invoking $ERL_TOP/
confi gure and make directly. Building using ot p_bui | d is easier since it involves fewer steps, but the
ot p_bui I d build procedure is not as flexible as the conf i gur e/make build procedure. Note that ot p_bui | d

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 15

2.3 Cross Compiling Erlang/OTP

conf i gur e will produce a default configuration that differs from what conf i gur e will produce by default. For
example, currently - - di sabl e- dynami c- ssl -1 i bisaddedtotheconf i gur e command lineargumentsunless
- -enabl e- dynani c- ssl - 1i b has been explicitly passed. The binary releases that we deliver are built using
ot p_bui I d. Thedefaultsused by ot p_bui | d confi gur e may change a any time without prior notice.

Cross Configuration

The $SERL_TOP/ xconp/ er | - xconp. conf . t enpl at e file contains all available cross configuration variables
and can be used as a template when creating a cross compilation configuration. All cross configuration
variables are aso listed at the end of this document. For examples of working cross configurations see the
$ERL_TOP/ xconp/ erl - xconp-Ti | eraMDE2. O-ti | epro. conf file and the $ERL_TOP/ xconp/ er| -
xconp- x86_64-saf -1 i nux- gnu. conf file. If the default behavior of a variable is satisfactory, the variable
does not need to be set. However, the conf i gur e script will issue a warning when a default value is used. When
avariable has been set, no warning will be issued.

A cross configuration file can be passed to ot p_bui | d confi gur e using the - - xconp- conf command line
argument. Note that conf i gur e does not accept this command line argument. When using the conf i gur e script
directly, pass the configuration variables as arguments to conf i gur e using a <VARI ABLE>=<VALUE> syntax.
Variables can also be passed as environment variablesto conf i gur e. However, if you pass the configuration in the
environment, make sureto unset all of these environment variables beforeinvoking mak e; otherwise, the environment
variables might set make variables in some applications, or parts of some applications, and you may end up with an
erroneously configured build.

What can be Cross Compiled?

All Erlang/OTP applications except the wx application can be cross compiled. The build of thewx driver will currently
be automatically disabled when cross compiling.

Compatibility

The build system, including cross compilation configuration variables used, may be subject to non backward
compatible changes without prior notice. Current cross build system has been tested when cross compiling some
Linux/GNU systems, but has only been partly tested for more esoteric platforms. The VxWorks examplefileishighly
dependent on our environment and is here more or less only for internal use.

Patches

Please submit any patches for cross compiling in away consistent with this system. All input is welcome as we have
avery limited set of cross compiling environments to test with. If a new configuration variable is needed, add it to
$ERL_TOP/ xconp/ er | - xconp. conf . tenpl at e, and useitinconfi gur e. i n. Other files that might need
to be updated are:

e $ERL_TOP/ xconp/ erl -xconp-vars. sh

e S$ERL_TOP/erl-build-tool -vars. sh

« $ERL TOP/erts/aclocal .

e $ERL_TOP/ xconp/ README. nd

e $ERL_TOP/ xconp/ erl - xconp-*. conf

Note that this might be an incomplete list of files that need to be updated.

General information on how to submit patches can be found at: http://wiki.github.com/erlang/otp/submitting-
patches

2.3.2 Build and Install Procedure

If you are building in Git, you want to read the Building in Git section of $ERL_TOP/HOWTO/INSTALL.md before
proceeding.

16 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href

2.3 Cross Compiling Erlang/OTP

We will first go through the conf i gur e/make build procedure which people probably are most familiar with.

Building With configure/make Directly

1
Change directory into the top directory of the Erlang/OTP source tree.

$ cd $ERL TOP

In order to compile Erlang code, asmall Erlang bootstrap system has to be built, or an Erlang/OTP system of the same
release as the one being built has to be provided in the $PATH. The Erlang/OTP for the target system will be built
using this Erlang system, together with the cross compilation tools provided.

If you want to build using a compatible Erlang/OTP system in the $PATH, jump to (3).
Building a Bootstrap System
@

$./configure --enable-bootstrap-only
$ make

The- - enabl e- boot st rap- onl y argument to conf i gur e isn't strictly necessary, but will speed things up. It
will only run conf i gur e in applications necessary for the bootstrap, and will disable alot of things not needed by
the bootstrap system. If you run conf i gur e without - - enabl e- boost r ap- onl y you also have to run make as
make boot st r ap; otherwise, the whole system will be built.

Cross Building the System
(©)

$./configure --host=<HOST> --build=<BUILD> [Other Config Args]
$ make

<HOST> is the host/target system that you build for. It does not have to be a full CPU- VENDOR- OS triplet, but can
be. The full CPU- VENDOR- CS triplet will be created by executing $ERL_TOP/ ert s/ aut oconf/ confi g. sub
<HOST>. If conf i g. sub fails, you need to be more specific.

<BUI LD> should equal the CPU- VENDOR- CS triplet of the system that you build on. If you execute SERL_TOP/
erts/aut oconf/config. guess, it will in most cases print the triplet you want to use for this.

Pass the cross compilation variables as command line argumentsto conf i gur e using a<VARI ABLE>=<VALUE>
syntax.

Y ou can not passaconfigurationfileusingthe- - xconp- conf argumentwhenyouinvokeconf i gur e directly.
The - - xconp- conf argument can only be passedto ot p_bui | d confi gure.

make will verify that the Erlang/OTP system used when building is of the same release as the system being
built, and will fail if this is not the case. It is possible, however not recommended, to force the cross
compilation even though the wrong Erlang/OTP system is used. This by invoking make like this. nmake
ERL_XCOWP_FORCE_DI FFERENT_OTP=yes.

Invoking make ERL_XCOWP_FORCE DI FFERENT OTP=yes might fail, silently produce suboptimal code,
or silently produce erroneous code.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 17

2.3 Cross Compiling Erlang/OTP

Installing
You can either install using the installation paths determined by conf i gur e (4), or install manually using (5).
Installing Using Paths Determined by configure
(4)
$ make install DESTDIR=<TEMPORARY PREFIX>

make install will install at alocation specified when doing conf i gur e. conf i gur e arguments specifying
where the installation should reside are for example: - - prefi x, - - exec-prefi x,--1ibdir,--bindir,etc.
By default it will install under / usr /1 ocal . You typically do not want to install your cross build under / usr/

| ocal onyour build machine. Using DESTDIR will cause the installation paths to be prefixed by $DESTDI R. This
makes it possible to install and package the installation on the build machine without having to place the installation
in the same directory on the build machine as it should be executed from on the target machine.

When make i nstall hasfinished, change directory into $DESTDI R, package the system, move it to the target
machine, and unpack it. Note that theinstallation will only be working on the target machine at the location determined
by confi gure.

Installing Manually
©)
$ make release RELEASE ROOT=<RELEASE DIR>
make rel ease will copy what you have built for the target machine to <RELEASE DI R>. Thel nst al | script
will not be run. The content of <RELEASE DI R> iswhat by default endsupin/ usr/ | ocal /i b/ erl ang.

Thel nst al | script used when installing Erlang/OTP requires common Unix tools such assed to be present in your
$PATH. If your target system does not have such tools, you need to run the | nst al | script on your build machine
before packaging Erlang/OTP. The | nst al | script should currently be invoked as follows in the directory where
it resides (the top directory):

$./Install [-cross] [-minimal|-sasl] <ERL ROOT>

where:

e« -mni mal Createsan installation that starts up aminimal amount of applications, i.e., only ker nel and
st dl i b are started. The minimal system is normally enough, and iswhat make i nstal | uses.

e -sasl Createsaninstalation that also starts up the sas| application.

e -cross For cross compilation. Informs the install script that it is run on the build machine.

e <ERL_ROQOOT> - The absolute path to the Erlang installation to use at run time. Thisis often the same as the
current working directory, but does not have to be. It can follow any other path through the file system to the
same directory.

If neither - m ni mal , nor - sasl is passed as argument you will be prompted.

Y ou can now either do:

(6)

» Decide where the installation should be located on the target machine, run the | nst al | script on the build

machine, and package the installed installation. The installation just need to be unpacked at the right location on
the target machine:

$ cd <RELEASE DIR>
$./Install -cross [-minimal|-sasl] <ABSOLUTE_ INSTALL DIR ON TARGET>

or:

18 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

2.3 Cross Compiling Erlang/OTP

()
« Packagetheinstallation in <RELEASE_DI R>, place it wherever you want on your target machine, and run the
I nst al | script on your target machine:

$ cd <ABSOLUTE INSTALL DIR ON TARGET>
$./Install [-minimal|-sasl] <ABSOLUTE_INSTALL DIR ON_TARGET>

Building With the otp_build Script
)
$ cd $ERL TOP
9)
$./otp build configure --xcomp-conf=<FILE> [Other Config Args]
aternatively:
$./otp build configure --host=<HOST> --build=<BUILD> [Other Config Args]

If you have your cross compilation configuration in afile, pass it using the - - xconp- conf =<FI LE> command
line argument. If not, pass - - host =<HOST>, - - bui | d=<BUI LD>, and the configuration variables using a
<VARI ABLE>=<VALUE> syntax on the command line (same asin (3)). Note that <HOST> and <BUI LD> haveto be
passed one way or the other; either by using er | _xconp_host =<HOST> and er | _xconp_bui | d=<BUI LD>
in the configuration file, or by using the - - host =<HOST>, and - - bui | d=<BUI LD> command line arguments.

ot p_bui I d confi gur e will configure both for the boostrap system on the build machine and the crosshost system.
(10)
$./otp build boot -a

otp_build boot -a will first build a bootstrap system for the build machine and then do the cross build of the
system.

(11)

$./otp build release -a <RELEASE DIR>
otp_build rel ease -a will dothe same as (5), and you will after this have to do a manual install either by
doing (6), or (7).

2.3.3 Building and Installing the Documentation

After the system has been cross built you can build and install the documentation the same way as after a native build
of the system. See the How to Build the Documentation section in the $ERL_TOP/HOWTO/INSTALL.md document
for information on how to build the documentation.

2.3.4 Testing the cross compiled system

Some of the tests that come with erlang use native code to test. This means that when cross compiling erlang you
also have to cross compile test suites in order to run tests on the target host. To do this you first have to release the
tests as usual.

$ make release tests

or

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 19

2.3 Cross Compiling Erlang/OTP

$./otp build tests

The tests will be released into $ERL_TOP/ r el ease/ t est s. After releasing the tests you have to install the tests
on the build machine. Y ou supply the same xcomp fileasto. / ot p_bui | d in (9).

$ cd $ERL TOP/release/tests/test server/
$ $ERL_TOP/bootstrap/bin/erl -eval 'ts:install([{xcomp,"<FILE>"}])' -s ts compile testcases -s init stop

You should get alot of printouts as the testcases are compiled. Once done you should copy the entire SERL_TOP/
rel ease/ t est s folder to the cross host system.

Then go to the cross host system and setup the erlang installed in (4) or (5) to be in your $PATH. Then go to what
previously was SERL_TOP/ r el ease/ t est s/t est _ser ver and issue the following command.

$ erl -s ts install -s ts run all tests -s init stop
The configure should be skipped and all tests should hopefully pass. For more details about how to use ts run er |
-s ts help -s init stop

2.3.5 Currently Used Configuration Variables

Note that you cannot define arbitrary variables in a cross compilation configuration file. Only the ones listed below
will be guaranteed to be visible throughout the whole execution of al conf i gur e scripts. Other variables needs to
be defined as argumentsto conf i gur e or exported in the environment.

Variables for otp_build Only

Variables in this section are only used, when configuring Erlang/OTP for cross compilation using $ERL_TOP/
otp_build configure.

These variables currently have no effect if you configure using the conf i gur e script directly. ‘

e erl_xconp_buil d-Thebuild system used. Thisvalue will be passed as- - bui | d=$er| _xconp_bui Il d
argument to the confi gure script. It does not have to be a full CPU- VENDOR- OS triplet, but can
be. The full CPU- VENDOR- CS triplet will be created by $ERL_TOP/ ert s/ aut oconf/ confi g. sub
$erl _xconp_build. If set to guess, the build system will be guessed using $ERL_TOP/ ert s/
aut oconf/confi g. guess.

« erl_xconp_host - Cross host/target system to build for. This value will be passed as - - host =
$er| _xconp_host argument to the confi gur e script. It does not have to be a full CPU- VENDOR- OS
triplet, but can be. The full CPU- VENDOR- CS triplet will be created by $ERL_TOP/ ert s/ aut oconf/
config.sub $erl _xconp_host.

« erl_xconp_configure_fl ags - Extraconfigure flagsto passto theconf i gur e script.
Cross Compiler and Other Tools

If the crosscompilation toolsareprefixed by <HOST>- you probably do not need to set these variables (where<HOST>
iswhat has been passed as - - host =<HOST> argument to conf i gur e).

All variables in this section can also be used when native compiling.
e CC-Ccompiler.

* CFLAGS - C compiler flags.

e STATI C_CFLAGS - Static C compiler flags.

20 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Cross Compiling Erlang/OTP

e« CFLAG _RUNTI ME_LI BRARY_PATH - Thisflag should set runtime library search path for the shared libraries.
Note that this actually isalinker flag, but it needs to be passed via the compiler.

e CPP- C pre-processor.

e CPPFLAGS - C pre-processor flags.
e CXX- C++ compiler.

e CXXFLAGS - C++ compiler flags.

e LD-Linker.

e LDFLAGS - Linker flags.

e LIBS-Libraries.

Dynamic Erlang Driver Linking

Either set all or none of the DED_LD* variables. |

 DED_LD- Linker for Dynamically loaded Erlang Drivers.
e« DED _LDFLAGS - Linker flagsto usewith DED LD.

e DED LD FLAG RUNTI ME_LI BRARY_PATH - This flag should set runtime library search path for shared
libraries when linking with DED_LD.

Large File Support

Either set all or none of the LFS_* variables.

* LFS_CFLAGS - Large file support C compiler flags.
e LFS LDFLAGS - Largefile support linker flags.

e LFS LI BS- Largefilesupport libraries.

Other Tools

* RANLIB-ranli b archiveindex tool.

e« AR-ar archiving tool.

e CETCONF - get conf system configuration inspectiontool. get conf iscurrently used for finding out largefile
support flags to use, and on Linux systems for finding out if we have an NPTL thread library or not.

Cross System Root Locations

e« erl_xconp_sysroot - Theabsolute path to the system root of the cross compilation environment. Currently,
the cr ypt o, odbc, ssh and ssl applications need the system root. These applications will be skipped if the
system root has not been set. The system root might be needed for other things too. If this is the case and the
system root has not been set, conf i gur e will fail and request you to set it.

e erl_xconp_isysroot - The absolute path to the system root for includes of the cross compilation
environment. If not set, this value defaults to $er | _xconp_sysr oot , i.e, only set this value if the include
system root path is not the same as the system root path.

Optional Feature, and Bug Tests

Thesetests cannot (always) be done automatically when cross compiling. Y ou usually do not need to set thesevariabl es.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 21

2.3 Cross Compiling Erlang/OTP

Warning:

Setting these variables wrong may cause hard to detect runtime errors. If you need to change these values, really
make sure that the values are correct.

Note:

Some of these values will override results of tests performed by conf i gur e, and some will not be used until
confi gur e issurethat it cannot figure the result out.

Theconf i gur e script will issue awarning when a default value is used. When a variable has been set, no warning
will be issued.

erl _xconp_after_norecore_hook - yes| no. Defaults to no. If yes, the target system must have a
working __after_norecore_hook that can be used for tracking used mal | oc() implementations core
memory usage. Thisis currently only used by unsupported features.

erl _xconp_bi gendi an - yes| no. No default. If yes, the target system must be big endian. If no, little
endian. This can often be automatically detected, but not always. If not automatically detected, conf i gur e will
fail unlessthisvariableisset. Since no default valueisused, conf i gur e will try to figurethis out automatically.

erl _xconp_doubl e_mi ddl e - yes| no. Defaults to no. If yes, the target system must have doubles in
"middle-endian" format. If no, it has "regular" endianness.

erl _xconp_cl ock_gettime_cpu_tine-yes| no. Defaultsto no. If yes, the target system must have
aworkingcl ock_getti me() implementation that can be used for retrieving process CPU time.

er| _xconp_get addri nfo - yes| no. Defaults to no. If yes, the target system must have a working
get addri nf o() implementation that can handle both 1Pv4 and 1Pv6.

erl _xconp_get hrvtime_procfs_ioctl -yes| no.Defaultstono. If yes, thetarget system must have
aworking get hr vt i ne() implementation and is used with procfsi oct | ().

erl _xconp_dl sym brk_wrappers - yes| no. Defaults to no. If yes, the target system must have a
workingdl sym(RTLD_NEXT, <S>) implementation that can be used on br k and sbr k symbols used by the
mal | oc() implementation in use, and by thistrack thermal | oc() implementations core memory usage. This
iscurrently only used by unsupported features.

erl _xconp_kqueue - yes| no. Defaultsto no. If yes, the target system must have a working kqueue()
implementation that returns a file descriptor which can be used by pol | () and/or sel ect () . If no and the
target system has not got epol | () or/ dev/ pol I , the kernel-poll feature will be disabled.

erl _xconp_linux_clock_gettime_correction - yes| no. Defaults to yes on Linux; otherwise,
no. If yes, cl ock_getti me(CLOCK_MONOTONI C,) on the target system must work. This variable is
recommended to be set to no on Linux systems with kernel versions less than 2.6.

erl _xconp_Ilinux_nptl -yes| no. Defaultsto yes on Linux; otherwise, no. If yes, the target system
must have NPTL (Native POSIX Thread Library). Older Linux systems have LinuxThreads instead of NPTL
(Linux kernel versionstypically lessthan 2.6).

erl _xconp_Ilinux_usabl e_sigal tstack -yes| no. Defaultstoyes on Linux; otherwise, no. If yes,
si gal t st ack() must be usable on the target system. si gal t st ack() on Linux kernel versions less than
2.4 are broken.

erl _xconp_Ilinux_usabl e_si gusrx -yes| no. Defaultstoyes. If yes, the SI GUSR1 and SI GUSR2
signals must be usable by the ERTS. Old LinuxThreads thread libraries (Linux kernel versionstypically lessthan
2.2) used these signals and made them unusable by the ERTS.

erl _xconp_pol | -yes| no. Defaultsto no on Darwin/MacOSX; otherwise, yes. If yes, the target system

must have a working pol | () implementation that also can handle devices. If no, sel ect () will be used
instead of pol | () .

22 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.4 How to Build Erlang/OTP on Windows

e erl_xconp_put env_copy - yes| no. Defaults to no. If yes, the target system must have a put env ()
implementation that stores a copy of the key/value pair.

e erl_xconp_reliable fpe-yes|no.Defaultstono. If yes, thetarget system must have reliable floating
point exceptions.

« erl_xconp_posi x_memnal i gn - yes| no. Defaults to yes if posi x_nemal i gn system call exists;
otherwise no. If yes, thetarget system must haveaposi x_nmenal i gn implementation that accepts larger than
page size alignment.

e erl_xconp_code_nodel snall - yes| no. Default to no. If yes, the target system must place the
beam.smp executable in the lower 2 GB of memory. That is it should not use position independent executable.

2.4 How to Build Erlang/OTP on Windows

Table of Contents

e Introduction

e Short Version

* Frequently Asked Questions

e Toolsyou Need and Their Environment
e The Shell Environment

e Building and Installing

* Development

e UsingGIT

2.4.1 Introduction

This section describes how to build the Erlang emulator and the OTP libraries on Windows. Note that the Windows
binary releases are till a preferred alternative if one does not have Microsoft’ s development tools and/or don’t want
to install Cygwin, MSY S or MSY S2.

Theinstructions apply to versions of Windows supporting the Cygwin emulated gnuish environment or the MSY S or
MSY S2 ditto. We've built on the following platforms: Windows 2012, Windows 7, Windows 8 and Windows 10. It's
probably possible to build on older platforms too, but you might not be able to install the appropriate Microsoft SDK,
Visual Studio or OpenSSL, in which case you will need to go back to earlier compilers etc.

The procedure described uses either Cygwin, MSYS or MSY S2 as a build environment. Y ou run the bash shell in
Cygwin/MSY SIMSY S2 and use the gnu make/configure/autoconf etc to do the build. The emulator C-source code
is, however, mostly compiled with Microsoft Visual C++™, producing a native Windows binary. This is the same
procedure as we use to build the pre-built binaries. Why we use VC++ and not gcc is explained further in the FAQ
section.

If you are not familiar with Cygwin, MSY S, MSY S2 or a Unix environment, you' || probably need to read up a bit on
how that works. There are plenty of documentation about this online.

These instructions apply for both 32-bit and 64-bit Windows. Note that even if you build a 64-bit version of Erlang,
most of the directories and files involved are still named win32. Some occurances of the name win64 are however
present. The installation file for a 64-bit Windows version of Erlang, for example, isot p_w n64_22. exe.

If you feel comfortable with the environment and build system, and have al the necessary tools, you have a great
opportunity to make the Erlang/OTP distribution for Windows better. Please submit any suggestions to our JIRA
and patches to our git project to let them find their way into the next version of Erlang. If making changes to
the build system (like makefiles etc) please bear in mind that the same makefiles are used on Unix/VxWorks, so
that your changes don't break other platforms. That of course goes for C-code too; system specific code resides
inthe$ERL_TOP/ ert s/ enul at or/ sys/ w n32 and SERL_TOP/ ert s/ et ¢/ wi n32 directoriesmostly. The
$ERL_TOP/ ert s/ emul at or / beamdirectory is for common code.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 23

href
href

2.4 How to Build Erlang/OTP on Windows

We've used this build procedure for a couple of releases, and it hasworked fine for us. Still, there might be all sorts of
troubles on different machinesand with different setups. We'll try to give hintswherever we've encountered difficulties,
but please share your experiences by using the erlang-questions mailing list. We cannot, of course, help everyone
with all their issues, so please try to solve such issues and submit solutions/workarounds.

Lets go then! We'll start with a short version of the setup procedure, followed by some FAQ, and then we'll go into
more details of the setup.

2.4.2 Short Version

In the following sections, we've described as much as we could about the installation of the tools needed. Once the
toolsareinstalled, building is quite easy. We have al so tried to make these instructions understandabl e for people with
limited Unix experience. Cygwin/MSY SIMSY S2 is awhole new environment to some Windows users, why careful
explanation of environment variables etc seemed to be in place.

Thisisthe short story though, for the experienced and impatient:
e Get andinstal complete Cygwin (latest), complete MinGW with MSY S or complete MSY S2

* Instal Visua Studio 12.0 (2013)

« Ingtall Microsofts Windows SDK 8.1

e Getandinstal Sun'sJDK 1.6.0 or later

e Getandinstall NSIS 2.01 or later (up to 2.46 tried and working)

e Get, build and install OpenSSL 0.9.8r or later (up to 1.0.2d tried & working) with static libs.

* GettheErlang sourcedistribution (from http://www.erlang.or g/download.html) and unpack with Cygwin's/
MSYSYMSYS2'st ar .

e Set ERL_TOP to where you unpacked the source distribution
* $ cd $ERL_TOP
e Modify PATH and other environment variables so that all these tools are runnable from a bash shell. Still

standing in $ERL_TOP, issue the following commands (for 32-bit Windows, remove the x64 from the first
row and changeot p_wi n64_22toot p_w n32_22 onthelast row):

$ eval "./otp build env _win32 x64°
$./otp build autoconf

$./otp build configure

$./otp build boot -a

$./otp build release -a

$./otp build installer win32

$ release/win32/otp win64 22 /S

Voilal St art - >Prograns->Erl ang OTP 22->Er| ang starts the Erlang Windows shell.

2.4.3 Frequently Asked Questions
e Q: So, now | can build Erlang using GCC on Windows?

A: No, unfortunately not. You'll need Microsoft's Visual C++ still. A Bourne-shell script (cc.sh) wraps the Visual
C++ compiler and runs it from within the Cygwin environment. All other tools needed to build Erlang are free-
ware/open source, but not the C compiler. The Windows SDK is however enough to build Erlang, you do not
need to buy Visual C++, just download the SDK (SDK version 8.1 == Visua studio 2013).

* Q: Why haven't you got rid of VC++ then, you ******?

A: Well, partly becauseit'sagood compiler - really! Actualy it'sbeen possiblein late R11-releasesto build using
mingw instead of visual C++ (you might see the remnants of that in some scripts and directories). Unfortunately
the development of the SMP version for Windows broke the mingw build and we chose to focus on the VC++

24 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href

2.4 How to Build Erlang/OTP on Windows

build as the performance has been much better in the VC++ versions. The mingw build will possibly be back, but
aslong as VC++ gives better performance, the commercial build will be aVC++ one.

Q: OK, you need V C++, but now you've started to demand aquite recent (and expensive) version of Visua Studio.
Why?

A: Well, it's not expensive, it's free (as in free beer). Just download and install the latest Windows SDK from
Microsoft and al the tools you need are there. The included debugger (WinDhbg) is also quite usable. That's
what | used when porting Erlang to 64bit Windows. Another reason to use later Microsoft compilers is DLL
compatibility. DLL'susing anew version of the standard library might not load if the VM is compiled with an old
V C++ version. So we should aim to use the latest freely available SDK and compiler.

Q: Can/will | build a Cygwin binary with the procedure you describe?

A: No, the result will be a pure Windows binary, and asfar as| know, it's not possible to make a Cygwin binary
yet. That is of course something desirable, but there are still some problems with the dynamic linking (dynamic
Erlang driver loading) as well as the TCP/IP emulation in Cygwin, which, I'm sure of, will improve, but still has
some problems. Fixing those problems might be easy or might be hard. | suggest you try yourself and share your
experience. No one would be happier if asimple ./ confi gure && nake would produce a fully fledged
Cygwin binary.

Q: Hah, | saw you, you used GCC even though you said you didn't!

A: OK, | admit, one of the files is compiled using Cygwin's or MinGW's GCC and the resulting object
code is then converted to MS VC++ compatible coff using a small C hack. It's because that particular file,
beam emu. ¢ benefits immensely from being able to use the GCC labels-as-values extension, which boosts
emulator performance by up to 50%. That does unfortunately not (yet) mean that all of OTP could be compiled
using GCC. That particular source code does not do anything system specific and actually is adopted to the fact
that GCC is used to compile it on Windows.

Q: So now there'saMS VC++ project file somewhere and | can build OTP using the nifty VC++ GUI?

A: No, never. The hassle of keeping the project files up to date and do all the steps that constitute an OTP build
from within the VC++ GUI is simply not worth it, maybe even impossible. A VC++ project file for Erlang/OTP
will never happen.

Q: So how doesit all work then?

A: Cygwin, MSY S or MSY S2 is the environment, which closely resembles the environment found on any Unix
machine. It's almost like you had a virtual Unix machine inside Windows. Configure, given certain parameters,
then creates makefiles that are used by the environment's gnu-make to built the system. Most of the actual
compilers etc are not, however, Cygwin/MSY SIMSY S2 tools, so we've written a couple of wrappers (Bourne-
shell scripts), which reside in $ERL_TOP/ et ¢/ wi n32/ cygwi n_t ool s and $ERL_TOP/ et ¢/ wi n32/

neys_t ool s. They al do conversion of parameters and switches common in the Unix environment to fit the
native Windows tools. Most notable is of course the paths, which in Cygwin/MSY SIMSY S2 are Unix-like paths
with "forward slashes' (/) and no drive letters. The Cygwin specific command cygpat h isused for most of the
path conversions in a Cygwin environment. Other tools are used (when needed) in the corresponding MSY S and
MSY S2 environment. Luckily most compilers accept forward slashes instead of backslashes as path separators,
but one still have to get the drive letters etc right, though. The wrapper scripts are not general in the sense that, for
example, cc.sh would understand and transl ate every possible gcc option and pass correct options to cl.exe. The
principle is that the scripts are powerful enough to alow building of Erlang/OTP, nho more, no less. They might
need extensions to cope with changes during the development of Erlang, and that's one of the reasons we made
them into shell-scripts and not Perl-scripts. We believe they are easier to understand and change that way.

INSERL_TOPR, thereisascriptcaledot p_bui | d. That script handlesthe hassle of giving all theright parameters
toconfi gur e/make and aso helpsyou set up the correct environment variablesto work with the Erlang source
under Cygwin/MSY SIMSY S2.

Q: You use and need Cygwin, but then you haven't taken the time to port Erlang to the Cygwin environment but
instead focus on your commercial release, isthat really ethical ?

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 25

2.4 How to Build Erlang/OTP on Windows

A: No, not really, but see this as a step in the right direction.
Q: Can | build something that looks exactly asthe commercial release?

A: Yes, we use the exact same build procedure.
Q: Which version of Cygwin/MSY S/MSY S2 and other tools do you use then?

A: For Cygwin, MSY Sand MSY S2 alike, wetry to use the | atest rel eases available when building. What versions
you use shouldn't really matter. We try to include workarounds for the bugs we've found in different Cygwin/
MSY SIMSY S2 releases. Please help us add workarounds for new Cygwin/MSY S/MSY S2-related bugs as soon
as you encounter them. Also please do submit bug reports to the appropriate Cygwin, MSY S and/or MSY S2
developers. The GCC we used for 22 wasversion 4.8.1 (MinGW 32hit) and 4.8.5 (MSY S2 64bit). We used VC++
12.0 (i.e. Visua studio 2013), Sun's JDK 1.6.0_45 (32bit) and Sun's JDK 1.7.0_1 (64bit), NSIS 2.46, and Win32
OpenSSL 1.0.2d. Please read the next section for details on what you need.

Q: Can you help me setup X in Cygwin/MSY SIMSY S2?

A: No, unfortunately we haven't got time to help with Cygwin/MSY SIMSY S2 related user problems, please read
related websites, newsgroups and mailing lists.

2.4.4 Tools you Need and Their Environment

Y ou heed sometool sto be ableto build Erlang/OTP on Windows. Most notably you'll need Cygwin, MSY Sor MSY S2,
Visual Studio and Microsofts Windows SDK, but you might also want a Java compiler, the NSIS install system and
OpenSSL. Well, here's some information about the different tools:

Cygwin, the very latest is usually best. Get al the development tools and of course all the basic ditto. Make sure
to get jar and also make sure not to install a Cygwin'ish Java, since the Cygwin jar command is used but Sun's
Java compiler and virtual machine.

If you are going to build a 64bit Windows version, you should make sure to get MinGW's 64bit gcc installed with
Cygwin. It'sin one of the development packages.

URL: http://www.cygwin.com

Get the installer from the website and useiit to install Cygwin. Be sure to have fair privileges. If youreonan NT
domain you should consider running nkpasswd - d and nmkgr oup - d after the installation to get the user
databases correct. See their respective manual pages.

When you start your first bash shell, you will get an awful prompt. You might also have a PATH environment
variablethat contains backslashes and such. Edit SHOVE/ . pr of i | e and $HOVE/ . bashr ¢ to set fair prompts
and acorrect PATH. Alsodoanexport SHELL in. profi | e. For some non-obvious reason the environment
variable $SHELL is not exported in bash. Also note that . profi | e isrun at login time and . bashr ¢ when
sub shells are created. You'll need to explicitly source . bashr ¢ from . profi | e if you want the commands
there to be run at login time (like setting up aliases, shell functions and the like). You can for example do like
thisattheend of . profil e:

ENV=$HOME/ .bashrc
export ENV
. $ENV

Y ou might also want to setup X-windows (XFree86). That might be as easy as running startx from the command
prompt and it might be much harder. Use Google to find help.

If you don't use X-windows, you might want to setup the Windows console window by selecting propertiesin
the console system menu (upper left corner of the window, the Cygwin icon in the title bar). Especially setting
alarger screen buffer size (lines) is useful asit gets you a scrollbar so you can see whatever error messages that
might appear.

There are afew other shellsavailable, but in all examples below we assume that you use bash.

26 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

2.4 How to Build Erlang/OTP on Windows

Alternatively you download MinGW and MSY S. You'll find the latest installer at:

URL: http://sour cefor ge.net/projectsymingw/files/I nstaller /mingw-get-inst/

Make sureto install the basic dev tools, but avoid the MinGW autoconf and install the msys one instead.
To be able to build the 64bit VM, you will also need the 64bit MinGW compiler from:

URL.: http://sour cefor ge.net/proj ectsymingw-w64/files/latest/download ?sour ce=files

Wevetried up to 1.0, but the latest version should do. Make sure you download the mi ngw w64- bi n_i 686-
nm ngw_<somet hi ng>. zi p, not alinux version. Y ou unzip the package on top of your MinGW installation
(c:\' M nGW and that'siit.

A third aternative isto download and install MSY S2 from:

URL: https.//msys2.github.io/

When you've followed the instructions there, you aso need to install these packages: autoconf, make, perl, and
tar. Y ou do so by running the following in the msys console:

pacman -S msys/autoconf msys/make msys/perl msys/tar
You aso need agcc. If you installed the 64 bit MSY S2 you run:
mingw64/mingw-w64-x86 64-gcc
And for 32 bit MSY S2:

pacman -S mingw32/mingw-w64-1686-gcc
pacman -S mingw-w64-i686-editrights

Visual Studio 2013 (Visua Studio 12.0). Download and run the web installer from:

https://www.visualstudio.com/
Microsofts Windows SDK version 8.1 (corresponding to VC++ 12.0 and Visual Studio 2013). You'll find it here:

URL: https.//msdn.microsoft.com/en-us/windows/desktop/bg162891.aspx

To help setup the environment, there is a bat file, Y%°PROGRAMFI LES% M rosoft Visual Studio
12. 0\ VC\ vcvarsal | . bat, that set's the appropriate environment for a Windows command prompt.
This is not appropriate for bash, so you'll need to convert it to bash-style environments by editing your
. bash_profil e.Inmy case, where the SDK isinstalled in the default directory and %°ROGRAMFI LES%is
C:\ Program Fi | es, the commands for setting up a 32bit build environment (on a 64bit or 32bit machine)
look like this (in Cygwin):

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 27

href
href
href
href

2.4 How to Build Erlang/OTP on Windows

Some common paths
C DRV=/cygdrive/c
PRG_FLS=$C DRV/Program\ Files

nsis

NSIS BIN=$PRG_FLS/NSIS

java

JAVA BIN=$PROGRAMFILES/Java/jdkl.7.0 02/bin

##
MS SDK
##

CYGWIN=nowinsymlinks

VISUAL STUDIO ROOT=$PRG FLS/Microsoft\ Visual\ Studio\ 12.0

WIN VISUAL STUDIO ROOT="C:\\Program Files\\Microsoft Visual Studio 12.0"
SDK=$PRG_FLS/Windows\ Kits/8.1

WIN SDK="C:\\Program Files\\Windows Kits\\8.1"

PATH="$NSIS BIN:\

$VISUAL STUDIO ROOT/VC/bin:\

$VISUAL STUDIO ROOT/VC/vcpackages:\

$VISUAL STUDIO ROOT/Common7/IDE:\

$VISUAL STUDIO ROOT/Common7/Tools:\

$SDK/bin/x86

/usr/local/bin:/usr/bin:/bin:\
/cygdrive/c/WINDOWS/system32:/cygdrive/c/WINDOWS:\
/cygdrive/c/WINDOWS/system32/Wbem:\

$JAVA BIN"

LIBPATH="$WIN VISUAL STUDIO ROOT\\VC\\lib"
LIB="$WIN VISUAL STUDIO ROOT\\VC\\L1ib\\;$WIN SDK\\lib\\winv6.3\\um\\x86"

INCLUDE="$WIN VISUAL STUDIO ROOT\\VC\\include\\;$WIN SDK\\include\\shared\\;\
$WIN SDK\\include\\um;$WIN SDK\\include\\winrt\\;$WIN SDK\\include\\um\\gl"

export CYGWIN PATH LIBPATH LIB INCLUDE

If you're using MinGW's MSY S instead, you need to change the C_DRV setting, which would read:
C_DRV=/c

and you also need to change the PATH environment variable to:

MINGW_BIN=/c/MinGW/bin

PATH="$NSIS BIN:\

$VISUAL STUDIO ROOT/VC/bin:\
$VISUAL_STUDIO ROOT/VC/vcpackages:\
$VISUAL STUDIO ROOT/Common7/IDE:\
$VISUAL STUDIO ROOT/Common7/Tools:\
$SDK/bin/x86:/usr/local/bin:\

$MINGW BIN:\
/bin:/c/Windows/system32:/c/Windows:\
/c/Windows/System32/Wbem:\

$JAVA BIN"

For MSY S2 you use the same C_DRV and PATH asfor MSY S, only update the M NGW BI N:

MINGW_BIN=/mingw32/bin

28 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.4 How to Build Erlang/OTP on Windows

If you are building a 64 bit version of Erlang, you should set up PATHS etc a little differently. We have two
templates to make things work in both Cygwin and MSY'S but needs editing to work with MSY S2 (see the
commentsin the script). The following oneisfor 32 hits:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 29

2.4 How to Build Erlang/OTP on Windows

make winpath()

{
P=$1
if ["$IN CYGWIN" = "true"]; then
cygpath -d "$P"
else
(cd "$P" && /bin/cmd //C "for %i in (".") do @echo %~fsi")
fi
)
make upath()
{
P=$1
if ["$IN CYGWIN" = "true"]; then
cygpath "$P"
else
echo "$P" | /bin/sed 's,”\([a-zA-Z]\):\\,/\L\1/,;s,\\,/,q"
fi
)

Some common paths

if [-x /usr/bin/msys-?7.0.dll]; then
Without this the path conversion won't work
COMSPEC="C:\Windows\System32\cmd.exe'
MSYSTEM=MINGW32 # Comment out this line if in MSYS2
export MSYSTEM COMSPEC
For MSYS2: Change /mingw/bin to the msys bin dir on the line below
PATH=/usr/local/bin:/mingw/bin:/bin:/c/Windows/system32:\
/c/Windows:/c/Windows/System32/Wbem
C DRV=/c
IN CYGWIN=false

else
PATH=/1ldisk/overrides:/usr/local/bin:/usr/bin:/bin:\
/usr/X11R6/bin:/cygdrive/c/windows/system32:\
/cygdrive/c/windows:/cygdrive/c/windows/system32/Wbem
C DRV=/cygdrive/c
IN CYGWIN=true

fi

obe otp gcc_vsn map="
k=>default

obe otp 64 gcc vsn map="
k=>default

Program Files

PRG_FLS=$C DRV/Program\ Files

Visual Studio
VISUAL STUDIO ROOT=$PRG _FLS/Microsoft\ Visual\ Studio\ 12.0
WIN VISUAL STUDIO ROOT="C:\\Program Files\\Microsoft Visual Studio 12.0"

SDK
SDK=$PRG_FLS/Windows\ Kits/8.1
WIN SDK="C:\\Program Files\\Windows Kits\\8.1"

NSIS
NSIS BIN=$PROGRAMFILES/NSIS

Java
JAVA BIN=$PROGRAMFILES/Java/jdkl.7.0 02/bin

The PATH variable should be Cygwin'ish
VCPATH=

30 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.4 How to Build Erlang/OTP on Windows

$VISUAL STUDIO ROOT/VC/bin:\
$VISUAL_STUDIO ROOT/VC/vcpackages:\
$VISUAL_STUDIO ROOT/Common7/IDE:\
$VISUAL STUDIO ROOT/Common7/Tools:\
$SDK/bin/x86

Microsoft SDK libs
LIBPATH=$WIN VISUAL STUDIO ROOT\\VC\\lib

LIB=$WIN VISUAL STUDIO ROOT\\VC\\Tib\\;$WIN KITS\\1ib\\winv6.3\\um\\x86

INCLUDE=$WIN VISUAL STUDIO ROOT\\VC\\include\\;\
$WIN KITS\\include\\shared\\;$WIN KITS\\include\\um;\
SWIN KITS\\include\\winrt\\;$WIN KITS\\include\\um\\gl

Put nsis, c compiler and java in path
export PATH=$VCPATH:$PATH:$JAVA BIN:$NSIS BIN

Make sure LIB and INCLUDE is available for others
export LIBPATH LIB INCLUDE

The first part of the 64 hit template is identical to the 32 bit one, but there are some environment variable
differences:

Program Files
PRG_FLS64=$C DRV/Program\ Files
PRG_FLS32=$C DRV/Program\ Files\ \(x86\)

Visual Studio
VISUAL STUDIO ROOT=$PRG_FLS32/Microsoft\ Visual\ Studio\ 12.0
WIN VISUAL STUDIO ROOT="C:\\Program Files (x86)\\Microsoft Visual Studio 12.0"

SDK
SDK=$PRG FLS32/Windows\ Kits/8.1
WIN SDK="C:\\Program Files (x86)\\Windows Kits\\8.1"

NSIS

NSIS BIN=$PROGRAMFILES/NSIS

Java

JAVA BIN=$PROGRAMFILES/Java/jdkl.7.0 02/bin

The PATH variable should be Cygwin'ish
VCPATH=

$VISUAL STUDIO ROOT/VC/bin/amd64:\
$VISUAL STUDIO ROOT/VC/vcpackages:\
$VISUAL STUDIO ROOT/Common7/IDE:\

$VISUAL STUDIO ROOT/Common7/Tools:\
$SDK/bin/x86

Microsoft SDK libs
LIBPATH=$WIN VISUAL STUDIO ROOT\\VC\\lib\\amd64

LIB=$WIN VISUAL STUDIO ROOT\\VC\\lib\\amd64\\;\
SWIN KITS\\1ib\\winv6.3\\um\\x64

INCLUDE=$WIN VISUAL STUDIO ROOT\\VC\\include\\;\
$WIN_KITS\\include\\shared\\;$WIN_KITS\\include\\um;\
SWIN KITS\\include\\winrt\\;$WIN KITS\\include\\um\\gl

Put nsis, c compiler and java in path
export PATH=$VCPATH:$PATH:$JAVA BIN:$NSIS BIN

Make sure LIB and INCLUDE is available for others
export LIBPATH LIB INCLUDE

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 31

2.4 How to Build Erlang/OTP on Windows

Make sure to set the PATH so that NSIS and Microsoft SDK is found before the MSY S/Cygwin tools and that
Javaislast in the PATH.

Make a simple hello world and try to compile it with the cl command from within bash. If that does not work,
your environment needs fixing. Remember, there should be no backslashes in your path environment variable
in Cygwin bash, but LIB and INCLUDE should contain Windows style paths with semicolon, drive letters and
backslashes.

e Sun'sJavaJDK 1.6.0or later. Our Javacode (jinterface, ic) iswritten for JDK 1.6.0. Get it for Windows and install
it, the JRE is not enough. If you don't care about Java, you can skip this step. The result will be that jinterface
is not built.

URL: http://java.sun.com
Add javac LAST to your path environment in bash, in my case this means:

"PATH="$PATH:/cygdrive/c/Program Files/Java/jdkl.7.0 02/bin""

No CLASSPATHor anything isneeded. Typej avac inthebash prompt and you should get alist of available Java
options. Make sure, e.g by typingt ype j ava, that you use the Javayou installed. Note however that Cygwin's/
MIinGW'SMSY S2'sj ar . exe isused. That's why the JDK bin-directory should be added last in the PATH.

e Nullsoft NSISinstaller system. Y ou need this to build the self installing package. It's a free open source installer
that's much nicer to use than the commercial Wise and Install shield installers. This is the installer we use for
commercial releases aswell.

URL.: http://nsis.sour cefor ge.net/download
Install the lot, especially the modern user interface components, asit's definitely needed. Put mekensi s inyour
path, in my case:

PATH=/cygdrive/c/Program\ Files/NSIS:$PATH

Type makensis at the bash prompt and you should get alist of optionsif everything is OK.

e OpenSSL. Thisisif you want the SSL and crypto applications to compile (and run). There are prebuilt binaries,
which you can just download and install, available here:

URL: http://openssl.or g/lcommunity/binaries.html

We would recommend using 1.0.2d.
* Building with wxWidgets. Download wxWidgets-3.0.3 or higher.

Install or unpack it to the pgm folder: Cygwin: DRI VE: / PATH cygw n/ opt/1 ocal / pgm MSYS:
DRI VE: /| PATH M nGW nsys/ 1. 0/ opt /| ocal / pgmMSYS2: DRI VE: / PATH nmsys<32/ 64>/ opt /
| ocal / pgm

If the wxUSE_POSTSCRI PT isn't enabled in <pat h\t o\ pgne\ wx MSW 3. 0. 3\'i ncl ude\ wx\ nsw
\ set up. h, enableit.

build: From a command prompt with the VC tools available (See the instructions for OpenSSL build above for
help on starting the proper command prompt in REL EASE mode):

C:\...\> cd <path\to\pgm>\wxMSW-3.0.3\build\msw
C:\...\> nmake BUILD=release SHARED=0 DIR SUFFIX CPU= -f makefile.vc

Or - if building a 64bit version:

C:\...\> cd <path\to\pgm>\wxMSW-3.0.3\build\msw
C:\...\> nmake TARGET_CPU=amd64 BUILD=release SHARED=0 DIR SUFFIX CPU= -f makefile.vc

32 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href
href

2.4 How to Build Erlang/OTP on Windows

e Get the Erlang source distribution (from http://www.erlang.or g/download.html). The same as for Unix
platforms. Preferably use tar from within Cygwin, MSYS or MSY S2 to unpack the source tar.gz (t ar zxf
otp_src_22.tar.gz).

Set theenvironment ERL_ TOP to point to theroot directory of the sourcedistribution. Let'ssay | stood in SHOVE/
src and unpacked ot p_src_22. tar. gz, | then add thefollowingto. profi | e:

ERL_TOP=$HOME/src/otp_src_22
export $ERL_TOP

2.4.5 The Shell Environment

So, if you have followed the instructions above, when you start a bash shell, you should have an INCLUDE
environment with a Windows style path, a LIB environment variable also in Windows style, and finally a PATH that
let's you reach cl, makensis, javac etc from the command prompt (usewhi ch cl etc to verify from bash).

Y ou should aso have an ERL_ TOP environment variable that is Cygwin style, and points to a directory containing,
among other files, the script ot p_bui | d.

A final massage of the environment is needed, and that is done by the script SERL_TOP/ ot p_bui | d. Start bash
and do the following, note the "back-ticks" (*), can be quite hard to get on some keyboards, but pressing the back-
tick key followed by the space bar might do it...

$ cd $ERL_TOP
$ eval "./otp build env_win32°

If you're unable to produce back-ticks on your keyboard, you can use the ksh variant:

$ cd $ERL TOP
$ eval $(./otp build env_win32)

If you are building a 64 bit version, you supply ot p_bui | d with an architecture parameter:

$ cd $ERL TOP
$ eval "./otp build env win32 x64°

Thisshould do thefinal touch to the environment and building should be easy after this. Youcouldrun. / ot p_bui | d
env_w n32 without eval just to see what it does, and to see that the environment it sets seems OK. The path is
cleaned of spacesif possible (using DOS style short namesinstead), the variables OVERRI DE_ TARGET, CC, CXX, AR
and RANLI| B are set to their respective wrappers and the directories SERL_TOP/ ert s/ et ¢/ wi n32/ <cygwi n/
nmsys>_t ool s/vcand$ERL_TOP/ ert s/ etc/w n32/ <cygwi n/ nsys>_t ool areaddedfirstinthe PATH.

Now you can check which erlc you have by writingt ype er | c inyour shell. It shouldresidein SERL_TOP/ er t s/
et c/wi n32/ cygwi n_tool s or $ERL_TOP/ ert s/ et c/wi n32/ nsys_t ool s.

2.4.6 Building and Installing
Building is easiest using the ot p_bui | d script:

./otp build autoconf # Ignore the warning blob about versions of autoconf
./otp build configure <optional configure options>

./otp build boot -a

./otp build release -a <installation directory>

./otp build installer win32 <installation directory> # optional

+

Now you will have a file called ot p_wi n32_22. exe or ot p_wi n64_22. exe in the <instal |l ati on
directory>,i.e. SERL_TOP/ r el ease/ wi n32.

Lets get into more detail:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 33

href

2.4 How to Build Erlang/OTP on Windows

e $./otp_build autoconf - Thisstep rebuildsthe configure scriptsto work correctly in your environment.
In an ideal world, this would not be needed, but alas, we have encountered several incompatibilities between
our distributed configure scripts (generated on a Linux platform) and the Cygwin/MSY SIMSY S2 environment
over the years. Running autoconf in Cygwin/MSY SIMSY S2 ensures that the configure scripts are generated in a
compatible way and that they will work well in the next step.

e $./otp_build configure-Thisrunsthenewly generated configure scriptswith options making configure
behave nicely. Thetarget machinetypeisplainly wi n32, so alot of the configure-scripts recognize this awkward
target name and behave accordingly. The CC variable also makes the compiler becc. sh, which wraps MSVC+
+, so all configure tests regarding the C compiler gets to run the right compiler. A lot of the tests are not needed
on Windows, but we thought it best to run the whole configure anyway.

e« $./otp_build boot -a - This uses the bootstrap directory (shipped with the source, $ERL_TOP/
boot st r ap) to build a complete OTP system. When this is done you can run erl from within the source tree;
just type $ERL_TOP/ bi n/ er | and you whould have the prompt.

e $./otp_build rel ease -a-Buildsacommercial releasetree from the sourcetree. The default isto put it
inSERL_TOP/ r el ease/ wi n32. You can give any directory as parameter (Cygwin style), but it doesn't really
matter if you're going to build a self extracting installer too.

e« $./otp_build installer_w n32 - Creates the self extracting installer executable. The executable
ot p_wi n32_22. exe or ot p_wi n64_22. exe will be placed in the top directory of the release created in
the previous step. If no release directory is specified, the release is expected to have been built to $ERL_TOP/
rel ease/ wi n32, which also will be the place where the installer executable will be placed. If you specified
some other directory for the release (i.e. . /otp_build release -a /tnp/erl _release), youre
expected to givethe same parameter here, (i.e.. /ot p_buil d i nstall er_wi n32 /tnp/erl _rel ease).
You need to have a full NSIS installation and makensi s. exe in your path for this to work. Once you have
created the installer, you can run it to install Erlang/OTP in the regular way, just run the executable and follow
the stepsin the installation wizard. To get all default settings in the installation without any questions asked, you
run the executable with the parameter / S (capital S) likein:

$ cd $ERL_TOP
$ release/win32/otp win32 22 /S

or

$ cd $ERL_TOP
$ release/win32/otp win64 22 /S

and after a while Erlang/OTP-22 will have been installed in C:\ Program Fil es\erl 10. 6. 4\, with
shortcuts in the menu etc.

2.4.7 Development

Once the system is built, you might want to change it. Having a test release in some nice directory might be useful,
but you can also run Erlang from within the sourcetree. Thetarget | ocal _set up, makesthe program $ERL_TOP/
bi n/ erl . exe usableand it also uses all the OTP librariesin the source tree.

If you hack the emulator, you can build the emulator executable by standing in $ERL_TOP/ er t s/ ermul at or and
doasmple
$ make opt

Note that you need to haverun (cd $ERL_TOP && eval ~./otp_build env_wi n32") intheparticular
shell before building anything on Windows. After doing a make opt you can test your result by running $ERL_ TOP/
bi n/ erl . If you want to copy the result to a release directory (say / t mp/ er| _r el ease), you do this (still in
$ERL_TOP/ erts/enul ator)

34 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.4 How to Build Erlang/OTP on Windows

$ make TESTROOT=/tmp/erl release release

That will copy the emulator executables.

To make a debug build of the emulator, you need to recompile both beam dl | (the actual runtime system) and
erl exec. dl | . Dolikethis

cd $ERL_TOP

rm bin/win32/erlexec.dll
cd erts/emulator

make debug

cd ../etc

make debug

#H A A A A A

and sometimes

$ cd $ERL_TOP
$ make local setup

So now when you run $ERL_TOP/ er | . exe, you should have a debug compiled emulator, which you will see if
you do &

1> erlang:system info(system version).

in the erlang shell. If the returned string contains [debug] , you got a debug compiled emulator.
To hack the erlang libraries, you simply do anake opt in the specific "applications” directory, like:

$ cd $ERL _TOP/lib/stdlib
$ make opt

or even in the source directory...

$ cd $ERL_TOP/lib/stdlib/src
$ make opt

Note that you're expected to have afresh Erlang in your path when doing this, preferably the plain 22 you have built
in the previous steps. You could also add $ERL_TOP/ boot st r ap/ bi n to your PATH before rebuilding specific
libraries. That would give you a good enough Erlang system to compile any OTP erlang code. Setting up the path
correctly is a little bit tricky. You still need to have $ERL_TOP/ ert s/ et ¢/ wi n32/ cygwi n_t ool s/ vc and
$ERL_TOP/ erts/ etc/w n32/ cygwi n_t ool s before the actual emulator in the path. A typical setting of the
path for using the bootstrap compiler would be:

$ export PATH=$ERL TOP/erts/etc/win32/cygwin tools/vc\
:$ERL TOP/erts/etc/win32/cygwin_ tools:$ERL TOP/bootstrap/bin:$PATH

That should make it possible to rebuild any library without hassle...
If you want to copy alibrary (an application) newly built, to arelease area, you do like with the emul ator:

$ cd $ERL_TOP/lib/stdlib
$ make TESTROOT=/tmp/erlang release release

Remember that:

e Windows specific C-code goes in the $ERL_TOP/ ert s/ enul at or/ sys/wi n32, $ERL_TOP/ ert s/
ermul ator/drivers/w n32 or $ERL_TOP/ ert s/ et ¢/ wi n32.

» Windows specific erlang code should be used conditionally and the host OS tested in runtime, the exactly same
beam files should be distributed for every platform! So write code like:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 35

2.5 Patching OTP Applications

case os:type() of
{win32, } ->
do _windows specific();
Other ->
do fallback or exit()
end,

That's basically all you need to get going.

2.4.8 Using GIT

Y ou might want to check out versions of the source code from GitHUB. That is possible directly in Cygwin, but not
in MSYS. Thereisaproject MsysGIT:

URL :http://code.google.com/p/msysgit/

that makes a nice Git port. The msys prompt you get from MsysGIT is however not compatible with the full version
from MinGW, so you will need to check out files using MsysGIT's command prompt and then switch to a common
MSY S command prompt for building. Also all test suites cannot be built as MsysGIT/MSY S does not handle symbolic
links.

2.5 Patching OTP Applications
2.5.1 Introduction

This document describes the process of patching an existing OTP installation with one or more Erlang/OTP
applications of newer versions than aready installed. The tool ot p_pat ch_appl y is available for this specific
purpose. It resides in the top directory of the Erlang/OTP source tree.

Theot p_pat ch_appl y tool utilizestheruntime_dependenciestagin theapplication resourcefile. Thisinformation
isused to determine if the patch can be installed in the given Erlang/OTP installation directory.

Read more about the version handling introduced in Erlang/OTP release 17, which also describes how to determine
if an installation includes one or more patched applications.

If you want to apply patches of multiple OTP applications that resides in different OTP versions, you have to apply
these patches in multiple steps. It is only possible to apply multiple OTP applications from the same OTP version
at once.

2.5.2 Prerequisites

It's assumed that the reader is familiar with building and installing Erlang/OTP. To be able to patch an application,
the following must exist:

* AnErlang/OTP installation.
« An Erlang/OTP source tree containing the updated applications that you want to patch into the existing Erlang/

OTPinstalation.
2.5.3 Using otp_patch_apply

‘ Patching applicationsis a one-way process. Create a backup of your OTP installation directory before proceeding.

First of all, build the OTP source tree at $ERL_ TOP containing the updated applications.

36 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

2.5 Patching OTP Applications

Before applying a patch you need to do afull build of OTP in the source directory.

If you are building ingi t you first need to generate the conf i gur e scripts:
$./otp build autoconf
Configure and build al applicationsin OTP:

$ configure
$ make

or

$./otp build configure
$./otp build boot -a

If you have installed documentation in the OTP installation, a so build the documentation:
$ make docs

After the successful build it's time to patch. The source tree directory, the directory of the installation and the
applications to patch are given as arguments to ot p_pat ch_appl y. The dependencies of each application are
validated against the applications in the installation and the other applications given as arguments. If a dependency
error is detected, the script will be aborted.

Theot p_pat ch_appl y syntax:

$ otp patch apply -s <Dir> -i <Dir> [-1 <Dir>] [-c] [-f] [-h] \
[-n] [-v] <Appl> [... <AppN>]

-s <Dir> -- OTP source directory that contains build results.
-1 <Dir> -- OTP installation directory to patch.
-1 <Dir> -- Alternative OTP source library directory path(s)

containing build results of OTP applications.
Multiple paths should be colon separated.

-C -- Cleanup (remove) old versions of applications
patched in the installation.
-f -- Force patch of application(s) even though

dependencies are not fulfilled (should only be
considered in a test environment).

-h -- Print help then exit.

-n -- Do not install documentation.
-v -- Print version then exit.
<AppX> -- Application to patch.

Environment Variable:
ERL LIBS -- Alternative OTP source library directory path(s)
containing build results of OTP applications.
Multiple paths should be colon separated.

| The complete build environment is required while running ot p_pat ch_appl y. |

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 37

2.5 Patching OTP Applications

All source directoriesidentified by - s and - | should contain build results of OTP applications.

For example, if the user wants to install patched versions of mesi a and ssl builtin/ hone/ e/ gi t / ot p into
the OTPinstallation located in/ opt / er | ang/ ny_ot p type

$ otp patch apply -s /home/me/git/otp -i /opt/erlang/my otp \
mnesia ssl

If the list of applications contains core applications, i.eert s, kernel ,stdli b orsasl,thel nstal | script
in the patched Erlang/OTP installation must be rerun.

The patched applications are appended to the list of installed applications. Take a look at <I nstal | Di r >/
rel eases/ OTP- REL/ i nst al | ed_appl i cati on_versions.

2.5.4 Sanity check

The application dependencies can be checked using the Erlang shell. Application dependencies are verified among
installed applications by ot p_pat ch_appl y, but these are not necessarily those actually loaded. By calling
system i nformation: sanity_check() onecan vaidate dependencies among applications actually loaded.

1> system information:sanity check().
ok

Please take alook at the reference of sanity_check() for more information.

38 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.1 System Principles

3 System Principles

3.1 System Principles
3.1.1 Starting the System

An Erlang runtime system is started with command er | :

% erl
Erlang/0TP 17 [erts-6.0] [hipe] [smp:8:8]

Eshell V6.0 (abort with ~G)
1>

er | understands a number of command-line arguments, see the erl(1) manual page in ERTS. Some of them are also
described in this chapter.

Application programs can access the values of the command-line arguments by calling the function
i nit:get_argunent (Key) orinit:get_argunents().Seetheinit(3) manual pagein ERTS.

3.1.2 Restarting and Stopping the System
The runtime system is halted by calling hal t / 0, 1. For details, see the erlang(3) manual pagein ERTS.
Themodulei ni t contains functions for restarting, rebooting, and stopping the runtime system:

init:restart()
init:reboot()
init:stop()

For details, see the init(3) manual pagein ERTS.
The runtime system terminates if the Erlang shell is terminated.

3.1.3 Boot Scripts

The runtime system is started using a boot script. The boot script contains instructions on which code to load and
which processes and applicationsto start.

A boot script file has the extension . scri pt . The runtime system uses a binary version of the script. This binary
boot script file has the extension . boot .

Which boot script to use is specified by the command-line flag - boot . The extension . boot isto be omitted. For
example, using the boot script st art _al | . boot :

%

s erl -boot start all

If no boot script is specified, it defaultsto ROOT/ bi n/ st art , see Default Boot Scripts.

The command-line flag - i ni t _debug makesthei ni t process write some debug information while interpreting
the boot script:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 39

3.1 System Principles

% erl -init debug
{progress,preloaded}
{progress,kernel load completed}
{progress,modules loaded}
{start,heart}

{start, logger}

For a detailed description of the syntax and contents of the boot script, seethescri pt (4) manual pagein SASL.

Default Boot Scripts
Erlang/OTP comes with these boot scripts:

e« start_cl ean. boot - Loadsthe code for and starts the applications Kernel and STDLIB.
e start_sasl . boot - Loadsthe codefor and starts the applications Kernel, STDLIB, and SASL).

* no_dot _erl ang. boot - Loadsthe code for and starts the applications Kernel and STDLIB. Skips
loading thefile . er | ang. Useful for scripts and other tools that are to behave the same irrespective of user
preferences.

Which of start_cl ean and st art _sasl| to use as default is decided by the user when installing Erlang/OTP
using I nst al | . The user isasked "Do you want to use aminimal system startup instead of the SASL startup”. If the
answer isyes, thenst art _cl ean isused, otherwise st art _sasl| isused. A copy of the selected boot script is
made, named st art . boot and placed in directory ROOT/ bi n.

User-Defined Boot Scripts

It is sometimes useful or necessary to create a user-defined boot script. Thisis true especially when running Erlang
in embedded mode, see Code Loading Srategy.

A boot script can be written manually. However, it is recommended to create a boot script by generating it from a
releaseresourcefileName. r el , using thefunctionsyst ool s: make_scri pt/ 1, 2. Thisrequiresthat the source
code is structured as applications according to the OTP design principles. (The program does not have to be started
in terms of OTP applications, but can be plain Erlang).

For moreinformation about . r el files, see OTP Design Principles and the rel(4) manual pagein SASL.

The binary boot script file Nane. boot is generated from the boot script file Nane. scri pt, using the function
syst ool s: scri pt 2boot (Fil e).

3.1.4 Code Loading Strategy

The runtime system can be started in either embedded or inter active mode. Which one is decided by the command-
lineflag - node.

% erl -mode embedded

Default modeisi nt er act i ve and extra- node flags are ignored.
The mode properties are as follows:

* Inembedded mode, al code isloaded during system startup according to the boot script. (Code can also be
loaded later by explicitly ordering the code server to do so.)

« Ininteractive mode, the code is dynamically loaded when first referenced. When acall to afunction in amodule
is made, and the module is not loaded, the code server searches the code path and |oads the module into the
system.

40 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.2 Error Logging

Initially, the code path consists of the current working directory and all object code directories under ROOT/ | i b,
where ROOT is the installation directory of Erlang/OTP. Directories can be named Name[- Vsn] . The code server,
by default, chooses the directory with the highest version number among those which have the same Nane. The -
Vsn suffix is optiona. If an ebi n directory exists under the Narre[- Vsn] directory, this directory is added to the
code path.

The code path can be extended by using the command-lineflags-pa Directories and-pz Directories.
Theseadd Di r ect or i es to the head or the end of the code path, respectively. Example:

% erl -pa /home/arne/mycode

The code server module code contains a number of functions for modifying and checking the search path, see the
code(3) manual pagein Kernel.

3.1.5 File Types
The following file types are defined in Erlang/OTP:

File Type File Name/Extension Documented in

Module .erl Erlang Reference Manual
Includefile . hrl Erlang Reference Manual
Release resource file .rel rel(4) manual pagein SASL
Application resource file .app app(4) manual pagein Kernel
Boot script .script script(4) manual page in SASL
Binary boot script . boot -

Configuration file .config config(4) manual pagein Kernel
Application upgradefile . appup appup(4) manua pagein SASL
Release upgrade file relup relup(4) manual pagein SASL

Table 1.1: File Types

3.2 Error Logging

3.2.1 Error Information From the Runtime System

Error information from the runtime system, that is, information about a process terminating because of an uncaught
error exception, is by default written to terminal (tty):

=ERROR REPORT==== 9-Dec-2003::13:25:02 ===
Error in process <0.27.0> with exit value: {{badmatch,[1,2,31},[{m,f,1},{shell,eval loop,2}1}

The error information is handled by Logger, which is part of the Kernel application.
The exit reasons (such asbadar g) used by the runtime system are described in Errors and Error Handling.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 41

3.3 Creating and Upgrading a Target System

For information about Logger and its user interface, see the logger(3) manual page and the Logging section in the
Kernel User's Guide. The system can be configured so that log events are written to file or to tty, or both. In addition,
user-defined applications can send and format log events using Logger.

3.2.2 Log events from OTP behaviours

The standard behaviours (super vi sor, gen_ser ver, and so on) send progress and error information to Logger.
Progress reports are by default not logged, but can be enabled by setting the primary log level to i nf o, for example
by using the Kernel configuration parameter | ogger _| evel . Supervisor reports, crash reports and other error and
information reportsare by default logged through thelog handler which is set up when the Kernel application is started.

Prior to Erlang/OTP 21.0, supervisor, crash, and progress reports were only logged when the SASL application was
running. This behaviour can, for backwards compatibility, be enabled by setting the Kernel configuration parameter
ogger _sasl _conpati bl etot r ue. For moreinformation, see SASL Error Logging inthe SASL User's Guide.

% erl -kernel logger level info
Erlang/0TP 21 [erts-10.0] [source-13c50db] [64-bit] [smp:4:4] [ds:4:4:10] [async-threads:1] [hipe]

=PROGRESS REPORT==== 8-Jun-2018::16:54:19.916404 ===
application: kernel
started at: nonode@nohost
=PROGRESS REPORT==== 8-Jun-2018::16:54:19.922908 ===
application: stdlib
started at: nonode@nohost
=PROGRESS REPORT==== 8-Jun-2018::16:54:19.925755 ===
supervisor: {local,kernel safe sup}
started: [{pid,<0.74.0>},
{id,disk log sup},
{mfargs,{disk log sup,start link,[]}},
{restart type,permanent},
{shutdown, 1000},
{child type,supervisor}]
=PROGRESS REPORT==== 8-Jun-2018::16:54:19.926056 ===
supervisor: {local,kernel safe sup}
started: [{pid,<0.75.0>},
{id,disk log server},
{mfargs,{disk log server,start link,[]}},
{restart type,permanent},
{shutdown, 2000},
{child type,worker}]
Eshell V10.0 (abort with "G)
1>

3.3 Creating and Upgrading a Target System

When creating a system using Erlang/OTP, the simplest way is to install Erlang/OTP somewhere, install the
application-specific code somewhere el se, and then start the Erlang runtime system, making sure the code path includes
the application-specific code.

It is often not desirable to use an Erlang/OTP system as is. A developer can create new Erlang/OTP-compliant
applications for a particular purpose, and several original Erlang/OTP applications can be irrelevant for the purpose
in question. Thus, there is a need to be able to create a new system based on a given Erlang/OTP system, where
dispensable applications are removed and new applications are included. Documentation and source code isirrelevant
and is therefore not included in the new system.

This chapter is about creating such a system, which is called atarget system.
The following sections deal with target systems with different requirements of functionality:
e A basictarget system that can be started by calling the ordinary er | script.

42 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.3 Creating and Upgrading a Target System

A simpletarget system where aso code replacement in runtime can be performed.

« Anembedded target system where there is also support for logging output from the system to file for later
inspection, and where the system can be started automatically at boot time.

Hereisonly considered the case when Erlang/OTP is running on a UNIX system.

The sasl application includes the example Erlang module t ar get _syst em er |, which contains functions for
creating and installing atarget system. Thismodule is used in the following examples. The source code of the module
islistedin Listing of target_system.er|

3.3.1 Creating a Target System
It is assumed that you have aworking Erlang/OTP system structured according to the OTP design principles.

Step 1. Create a. r el file (see the rel(4) manual page in SASL), which specifies the ERTS version and lists all
applicationsthat are to beincluded in the new basic target system. An exampleisthefollowingnysyst em r el file:

%% mysystem.rel
{release,
{"MYSYSTEM", "FIRST"},
{erts, "5.10.4"},
[{kernel, "2.16.4"},
{stdlib, "1.19.4"},
{sasl, "2.3.4"},
{pea, "1.0"}1}.

Thelisted applications are not only original Erlang/OTP applications but possibly also new applications that you have
written (here exemplified by the application Pea (pea)).
Step 2. Start Erlang/OTP from the directory wherethe nysyst em r el fileresides:

os> erl -pa /home/user/target system/myapps/pea-1.0/ebin

Here also the path to the pea- 1. 0 ebin directory is provided.
Step 3. Create the target system:

1> target system:create("mysystem").

Thefunctiont ar get _syst em cr eat e/ 1 performs the following:

* Readsthefilenysyst em r el and createsanew filepl ai n. r el that isidentical to the former, except that
it only liststhe Kernel and STDLIB applications.

 Fromthefilesnysystem rel andpl ai n. rel createsthefilesnmysyst em scri pt, mysyst em boot,
pl ai n.scri pt,andpl ai n. boot throughacall tosyst ool s: make_scri pt/ 2.

* Creates the file mysystem tar. gz by acal to syst ool s: make_t ar/ 2. That file has the following
contents:

erts-5.10.4/bin/
releases/FIRST/start.boot
releases/FIRST/mysystem.rel
releases/mysystem.rel
lib/kernel-2.16.4/
lib/stdlib-1.19.4/
lib/sasl-2.3.4/
lib/pea-1.0/

Thefiler el eases/ FI RST/ st art . boot isacopy of our nysyst em boot

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 43

3.3 Creating and Upgrading a Target System

The release resource file mysyst em r el isduplicated in the tar file. Originally, this file was only stored in
ther el eases directory to make it possible for ther el ease_handl er to extract this file separately. After
unpacking thetar file,r el ease_handl er would automatically copy thefiletor el eases/ FI RST. However,
sometimes the tar file is unpacked without involving ther el ease_handl er (for example, when unpacking
thefirst target system). The fileistherefore now instead duplicated in the tar file so no manual copying is needed.

e Createsthe temporary directory t mp and extractsthetar filemysyst em t ar . gz into that directory.

* Deletesthefileser| andstart fromt np/ erts-5. 10. 4/ bi n. Thesefiles are created again from source
when installing the release.

* Createsthedirectory t np/ bi n.

» Copiesthe previously created filepl ai n. boot tot np/ bi n/ start. boot .

» Copiesthefilesepnd,run_erl ,andt o_erl| fromthedirectory t mp/ erts-5. 10. 4/ bi n to the directory
t np/ bi n.

e Createsthedirectory t np/ | 0g, which isused if the system is started as embedded with the bi n/ st ar t
script.

* Createsthefilet np/ rel eases/ start _er| . dat a with the contents "5.10.4 FIRST". Thisfileisto be
passed as datafiletothest art _er| script.

» Recreatesthefilenysyst em t ar. gz from the directoriesin the directory t np and removest np.

3.3.2 Installing a Target System
Step 4. Install the created target system in a suitable directory.

2> target system:install("mysystem", "/usr/local/erl-target").

Thefunctiont ar get _system i nstal | / 2 performsthe following:

» Extractsthetar filemysyst em t ar. gz into thetarget directory / usr/ 1 ocal / erl -t ar get .

e Inthetarget directory readsthefiler el eases/ start _er| . dat a tofind the Erlang runtime system
version ("5.10.4").

* Substitutes %1 NAL_ROOTDI R%and ¥%&EMJ%for / usr/ | ocal / er| -t ar get and beam respectively, in
thefileserl . src,start.src,andstart _erl.src of thetargetert s-5. 10. 4/ bi n directory, and
putstheresulting fileser | ,start,andrun_er| inthetarget bi n directory.

e Findlythetargetr el eases/ RELEASES fileis created from datain thefiler el eases/ mysystemrel .

3.3.3 Starting a Target System

Now we have atarget system that can be started in various ways. We start it as abasic tar get system by invoking:

os> /usr/local/erl-target/bin/erl

Here only the Kernel and STDLIB applications are started, that is, the system is started as an ordinary devel opment
system. Only two files are needed for all thisto work:

* bin/erl (obtainedfromerts-5.10.4/bin/erl.src)
e bin/start.boot (acopy of pl ai n. boot)

We can aso start a distributed system (requires bi n/ epnd).
To start all applications specified inthe original nysyst em r el file, useflag - boot asfollows:

os> /usr/local/erl-target/bin/erl -boot /usr/local/erl-target/releases/FIRST/start

44 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.3 Creating and Upgrading a Target System

We start asimpletarget system asabove. The only differenceisthat also thefiler el eases/ RELEASES is present
for code replacement in runtime to work.

To start an embedded target system, the shell script bi n/ st art isused. The script callsbi n/ run_er |, which
inturncallsbi n/ start _er| (roughly,start _er| isanembedded variant of er |).

The shell script st ar t , which is generated from erts-5.10.4/bin/start.src during installation, is only an example. Edit
it to suite your needs. Typicaly it is executed when the UNIX system boots.

run_erl isawrapper that provides logging of output from the runtime system to file. It also provides a simple
mechanism for attaching to the Erlang shell (t o_er |).

start _erl requires:

e Theroot directory ("/ usr/ 1l ocal /erl-target")

e Thereleasesdirectory ("/ usr/ | ocal /erl-target/rel eases"

e Thelocation of thefilestart _erl . data

It performs the following:

* Readsthe runtime system version (" 5. 10. 4") and release version (" FI RST") from thefile
start _erl.data.

» Startsthe runtime system of the version found.

» Providestheflag - boot specifying the boot file of the release version found (" r el eases/ FI RST/
start. boot").

start _erl also assumes that there is sys. confi g in the release version directory (" r el eases/ FI RST/
sys. confi g"). That isthetopic of the next section.

Thestart _er| shell scriptisnormally not to be altered by the user.

3.3.4 System Configuration Parameters

As was mentioned in the previous section, st art _er| requiresasys. confi g in the release version directory
("rel eases/ FI RST/ sys. confi g"). If there is no such file, the system start fails. Such a file must therefore
also be added.

If you have system configuration datathat is neither file-location-dependent nor site-dependent, it can be convenient to
createsys. confi g early, soit becomespart of thetarget systemtar filecreatedby t ar get _system create/ 1.
Infact, if youinthe current directory create not only thefilenysyst em rel , but alsofilesys. confi g, thelatter
fileistacitly put in the appropriate directory.

However, it can also be convenient to replace variables in within asys. conf i g on the target after unpacking but
beforerunning therelease. If you haveasys. confi g. sr c itwill beincluded andisnot required to beavalid Erlang
termfilelike sys. conf i g. Before running the release you must have avalid sys. conf i g in the same directory,
sousing sys. confi g. src requires having some tool to populate what is needed and write sys. confi g to disk
before booting the release.

3.3.5 Differences From the Install Script

The previous i nst al | / 2 procedure differs somewhat from that of the ordinary | nst al | shell script. In fact,
cr eat e/ 1 makesthe release package as complete as possible, and leave to thei nst al | / 2 procedure to finish by
only considering |ocation-dependent files.

3.3.6 Creating the Next Version

In this exampl e the Pea application has been changed, and so are the applications ERTS, Kernel, STDLIB and SASL.
Step 1. Create thefile. rel :

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 45

3.3 Creating and Upgrading a Target System

%% mysystem2.rel
{release,
{"MYSYSTEM", "SECOND"},
{erts, "6.0"},
[{kernel, "3.0"},
{stdlib, "2.0"},
{sasl, "2.4"},
{pea, "2.0"}]1}.

Step 2. Create the application upgrade file (see the appup(4) manual pagein SASL) for Pea, for example:

%% pea.appup

{II2' II’

[{"1.0",[{load module,pea lib}]1}1,
[{"1.0",[{load module,pea lib}]1}1}.

Step 3. From the directory where the file mysyst en®. r el resides, start the Erlang/OTP system, giving the path
to the new version of Pea:

os> erl -pa /home/user/target system/myapps/pea-2.0/ebin

Step 4. Create the release upgrade file (see the relup(4) manual page in SASL):

1> systools:make relup("mysystem2",["mysystem"], ["mysystem"],
[{path, ["/home/user/target system/myapps/pea-1.0/ebin",
"/my/old/erlang/lib/*/ebin"]}1).

Here" nmysyst ent' isthebasereleaseand " mysyst enR" isthe release to upgrade to.

Thepat h option isused for pointing out the old version of all applications. (The new versions are already in the code
path - assuming of course that the Erlang node on which thisis executed is running the correct version of Erlang/OTP.)

Step 5. Create the new release:

2> target system:create("mysystem2").
Given that the filer el up generated in Step 4 is now located in the current directory, it is automatically included in
the release package.
3.3.7 Upgrading the Target System

This part is done on the target node, and for this example we want the node to be running as an embedded system with
the- heart option, allowing automatic restart of the node. For more information, see Starting a Target System.

Weadd - heart tobi n/start:

#!/bin/sh
ROOTDIR=/usr/local/erl-target/

if [-z "$RELDIR"]
then
RELDIR=$RO0OTDIR/releases
fi
START ERL DATA=${1:-$RELDIR/start erl.data}

$ROOTDIR/bin/run_erl -daemon /tmp/ $ROOTDIR/log "exec $ROOTDIR/bin/start erl $ROOTDIR\
$RELDIR $START ERL DATA -heart"

46 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.3 Creating and Upgrading a Target System

We use the simplest possible sys. conf i g, whichwe storeinr el eases/ Fl RST:

%% sys.config
[1.

Finally, to prepare the upgrade, we must put the new release package in ther el eases directory of the first target
system:

0s> cp mysystem2.tar.gz /usr/local/erl-target/releases

Assuming that the node has been started as follows:

os> /usr/local/erl-target/bin/start

It can be accessed as follows:

os> /usr/local/erl-target/bin/to_erl /tmp/erlang.pipe.l

Logscanbefoundin/ usr/ | ocal / erl -target/| og. Thisdirectory is specified asan argumenttor un_er | in
the start script listed above.

Step 1. Unpack the release:

1> {ok,Vsn} = release handler:unpack release("mysystem2").

Step 2. Install the release:

2> release handler:install release(Vsn).

{continue after restart,"FIRST",[]}

heart: Tue Apr 1 12:15:10 2014: Erlang has closed.

heart: Tue Apr 1 12:15:11 2014: Executed "/usr/local/erl-target/bin/start /usr/local/erl-target/releases/ne
[End]

The above return value and output after the call tor el ease_handl er: i nstal | _rel ease/ 1 means that the
r el ease_handl er has restarted the node by using heart . This is always done when the upgrade involves a
change of the applications ERTS, Kernel, STDLIB, or SASL. For moreinformation, see Upgrade when Erlang/OTP
has Changed.

The node is accessible through a new pipe:

os> /usr/local/erl-target/bin/to erl /tmp/erlang.pipe.?2

Check which releases there are in the system:

1> release handler:which releases().

[{"MYSYSTEM", "SECOND",
["kernel-3.0","stdlib-2.0","sasl-2.4","pea-2.0"],
current},

{"MYSYSTEM", "FIRST",
["kernel-2.16.4","stdlib-1.19.4","sasl-2.3.4","pea-1.0"],
permanent}]

Our new release, "SECOND", isnow the current release, but we can also seethat our "FIRST" releaseis still permanent.
Thismeansthat if the node would be restarted now, it would come up running the "FIRST" rel ease again.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 47

3.3 Creating and Upgrading a Target System

Step 3. Make the new release permanent:

2> release handler:make permanent("SECOND").

Check the releases again:

3> release _handler:which releases().

[{"MYSYSTEM", "SECOND",
["kernel-3.0","stdlib-2.0","sasl-2.4","pea-2.0"],
permanent},

{"MYSYSTEM", "FIRST",
["kernel-2.16.4","stdlib-1.19.4","sasl-2.3.4","pea-1.0"],
old}]

We see that the new release version isper manent , so it would be safe to restart the node.

3.3.8 Listing of target_system.erl
This module can also be found in the exanpl es directory of the SASL application.

48 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.3 Creating and Upgrading a Target System

-module(target system).
-export([create/1l, create/2, install/2]).

Note: RelFileName below is the *stem* without trailing .rel,
.script etc.

o o of
o o o°

create(RelFileName)

@ of
o® o°

create(RelFileName) ->
create(RelFileName,[]).

create(RelFileName,SystoolsOpts) ->
RelFile = RelFileName ++ ".rel",
Dir = filename:dirname(RelFileName),
PlainRelFileName = filename:join(Dir,"plain"),
PlainRelFile = PlainRelFileName ++ ".rel",

io:fwrite("Reading file: ~tp ...~n", [RelFile]),
{ok, [RelSpec]} = file:consult(RelFile),
io:fwrite("Creating file: ~tp from ~tp ...~n",

[PlainRelFile, RelFile]),
{release,
{RelName, RelVsn},
{erts, ErtsVsn},
AppVsns} = RelSpec,
PlainRelSpec = {release,
{RelName, RelVsn},
{erts, ErtsVsn},
lists:filter(fun({kernel, }) ->
true;
({stdlib, }) ->
true;
() ->
false
end, AppVsns)

}I
{ok, Fd} = file:open(PlainRelFile, [write]),
io:fwrite(Fd, "~p.~n", [PlainRelSpecl]),
file:close(Fd),
io:fwrite("Making \"~ts.script\" and \"~ts.boot\" files ...~n",
[PlainRelFileName,PlainRelFileName]),
make script(PlainRelFileName,SystoolsOpts),
io:fwrite("Making \"~ts.script\" and \"~ts.boot\" files ...~n",
[RelFileName, RelFileName]),
make script(RelFileName,SystoolsOpts),

TarFileName = RelFileName ++ ".tar.gz",

io:fwrite("Creating tar file ~tp ...~n", [TarFileNamel]),
make tar(RelFileName,SystoolsOpts),

TmpDir = filename:join(Dir,"tmp"),
io:fwrite("Creating directory ~tp ...~n",[TmpDir]),
file:make dir(TmpDir),

io:fwrite("Extracting ~tp into directory ~tp ...~n", [TarFileName, TmpDir]),
extract tar(TarFileName, TmpDir),

TmpBinDir = filename:join([TmpDir, "bin"1),

ErtsBinDir = filename:join([TmpDir, "erts-" ++ ErtsVsn, "bin"]),

io:fwrite("Deleting \"erl\" and \"start\" in directory ~tp ...~n",
[ErtsBinDir]),

file:delete(filename:join([ErtsBinDir, "erl"]))

file:delete(filename:join([ErtsBinDir, "start"])),

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 49

3.3 Creating and Upgrading a Target System

io:fwrite("Creating temporary directory ~tp ...~n", [TmpBinDir]),
file:make dir(TmpBinDir),

io:fwrite("Copying file \"~ts.boot\" to ~tp ...~n",
[PlainRelFileName, filename:join([TmpBinDir, "start.boot"])1),
copy file(PlainRelFileName++".boot",filename:join([TmpBinDir, "start.boot"])),

io:fwrite("Copying files \"epmd\", \"run_erl\" and \"to_erl\" from \n"
"~tp to ~tp ...~n",
[ErtsBinDir, TmpBinDir]),

copy file(filename:join([ErtsBinDir, "epmd"]),
filename:join([TmpBinDir, "epmd"]), [preservel),

copy file(filename:join([ErtsBinDir, "run_erl"]),
filename:join([TmpBinDir, "run erl"]), [preserve]),

copy file(filename:join([ErtsBinDir, "to erl"]),
filename:join([TmpBinDir, "to erl"]), [preserve]),

%% This is needed if 'start' script created from 'start.src' shall
%% be used as it points out this directory as log dir for 'run erl'
TmpLogDir = filename:join([TmpDir, "log"l),

io:fwrite("Creating temporary directory ~tp ...~n", [TmpLogDir]),
ok = file:make dir(TmpLogDir),

StartErlDataFile = filename:join([TmpDir, "releases", "start erl.data"l),
io:fwrite("Creating ~tp ...~n", [StartErlDataFile]),

StartErlData = io lib:fwrite("~s ~s~n", [ErtsVsn, RelVsn]),

write file(StartErlDataFile, StartErlData),

io:fwrite("Recreating tar file ~tp from contents in directory ~tp ...~n",
[TarFileName, TmpDir]),

{ok, Tar} = erl tar:open(TarFileName, [write, compressed]),

%% {0k, Cwd} = file:get cwd(),

%% file:set cwd("tmp"),

ErtsDir = "erts-"++ErtsVsn,

erl tar:add(Tar, filename:join(TmpDir,"bin"), "bin", [1),

erl tar:add(Tar, filename:join(TmpDir,ErtsDir), ErtsDir, []),

erl tar:add(Tar, filename:join(TmpDir,"releases"), "releases", []),

erl tar:add(Tar, filename:join(TmpDir,"lib"), "lib", [1),

erl tar:add(Tar, filename:join(TmpDir,"log"), "log", [1),

erl_tar:close(Tar),

%% file:set cwd(Cwd),

io:fwrite("Removing directory ~tp ...~n",[TmpDir]),

remove dir tree(TmpDir),

ok.

install(RelFileName, RootDir) ->
TarFile = RelFileName ++ ".tar.gz",

io:fwrite("Extracting ~tp ...~n", [TarFile]),
extract tar(TarFile, RootDir),
StartErlDataFile = filename:join([RootDir, "releases", "start erl.data"]),

{ok, StartErlData} = read txt file(StartErlDataFile),

[ErlVsn, RelVsn|] = string:tokens(StartErlData, " \n"),

ErtsBinDir = filename:join([RootDir, "erts-" ++ ErlVsn, "bin"]),

BinDir = filename:join([RootDir, "bin"]),

io:fwrite("Substituting in erl.src, start.src and start_erl.src to "

"form erl, start and start erl ...\n"),

subst src_scripts(["erl", "start", "start erl"], ErtsBinDir, BinDir,
[{"FINAL ROOTDIR", RootDir}, {"EMU", "beam"}],
[preserve]),

%%! Workaround for pre OTP 17.0: start.src and start erl.src did

%%! not have correct permissions, so the above 'preserve' option did not help
ok = file:change mode(filename:join(BinDir,"start"),b8#0755),

ok = file:change mode(filename:join(BinDir,"start erl"),8#0755),

50 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.3 Creating and Upgrading a Target System

io:fwrite("Creating the RELEASES file ...\n"),
create RELEASES(RootDir, filename:join([RootDir, "releases",
filename:basename(RelFileName)])).
%% LOCALS

% make script(RelFileName,Opts)

® o°
o°

make script(RelFileName,Opts) ->
systools:make script(RelFileName, [no_module tests,
{outdir, filename:dirname(RelFileName)}
|Opts]).

%% make_tar(RelFileName,Opts)

o°
o°

make tar(RelFileName,Opts) ->
RootDir = code:root dir(),
systools:make tar(RelFileName, [{erts, RootDir},
{outdir, filename:dirname(RelFileName)}
|Opts]).

% extract tar(TarFile, DestDir)

® o°
o°

extract tar(TarFile, DestDir) ->
erl tar:extract(TarFile, [{cwd, DestDir}, compressed]).

create RELEASES(DestDir, RelFileName) ->
release handler:create RELEASES(DestDir, RelFileName ++ ".rel").

subst src_scripts(Scripts, SrcDir, DestDir, Vars, Opts) ->
lists:foreach(fun(Script) ->
subst src _script(Script, SrcDir, DestDir,
Vars, Opts)
end, Scripts).

subst src_script(Script, SrcDir, DestDir, Vars, Opts) ->
subst file(filename:join([SrcDir, Script ++ ".src"]),
filename:join([DestDir, Scriptl]),
Vars, Opts).

subst file(Src, Dest, Vars, Opts) ->
{ok, Conts} = read txt file(Src),
NConts = subst(Conts, Vars),
write file(Dest, NConts),
case lists:member(preserve, Opts) of
true ->
{ok, FileInfo} = file:read file info(Src),
file:write file info(Dest, FileInfo);
false ->
ok
end.

% subst(Str, Vars)

Vars = [{Var, Val}]

Var = Val = string()

Substitute all occurrences of %Var% for Val in Str, using the list
of variables in Vars.

A ® ® o P
o® o® o° o° o°

1]

ubst(Str, Vars) ->
subst(Str, Vars, []).

subst([$%, C| Rest], Vars, Result) when $A =< C, C =< $Z ->

subst var([C| Rest], Vars, Result, []);
subst([$%, C| Rest], Vars, Result) when $a =< C, C =< $z ->

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 51

3.3 Creating and Upgrading a Target System

subst var([C| Rest], Vars, Result, []);
subst([$%, C| Rest], Vars, Result) when C == § ->

subst var([C| Rest], Vars, Result, []);
subst([C| Rest], Vars, Result) ->

subst(Rest, Vars, [C| Result]);
subst([], Vars, Result) ->

lists:reverse(Result).

subst var([$%| Rest], Vars, Result, VarAcc) ->
Key = lists:reverse(VarAcc),
case lists:keysearch(Key, 1, Vars) of
{value, {Key, Value}} ->
subst(Rest, Vars, lists:reverse(Value, Result));
false ->
subst(Rest, Vars, [$%| VarAcc ++ [$%| Result]])
end;
subst var([C| Rest], Vars, Result, VarAcc) ->
subst var(Rest, Vars, Result, [C| VarAccl);
subst var([], Vars, Result, VarAcc) ->
subst([], Vars, [VarAcc ++ [$%| Result]]).

copy file(Src, Dest) ->
copy file(Src, Dest, []).

copy file(Src, Dest, Opts) ->
{ok, } = file:copy(Src, Dest),
case lists:member(preserve, Opts) of
true ->
{ok, FileInfo} = file:read file info(Src),
file:write file info(Dest, FileInfo);
false ->
ok
end.

write file(FName, Conts) ->
Enc = file:native name_encoding(),
{ok, Fd} = file:open(FName, [write]),
file:write(Fd, unicode:characters to binary(Conts,Enc,Enc)),
file:close(Fd).

read txt file(File) ->
{ok, Bin} = file:read file(File),
{ok, binary to list(Bin)}.

remove dir tree(Dir) ->
remove all files(".", [Dir]).

remove all files(Dir, Files) ->
lists:foreach(fun(File) ->
FilePath = filename:join([Dir, File]),
case filelib:is dir(FilePath) of
true ->
{ok, DirFiles} = file:list dir(FilePath),
remove all files(FilePath, DirFiles),
file:del dir(FilePath);
->
file:delete(FilePath)
end
end, Files).

52 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.4 Upgrade when Erlang/OTP has Changed

3.4 Upgrade when Erlang/OTP has Changed

3.4.1 Introduction

As of Erlang/OTP 17, most applications deliver a valid application upgrade file (appup). In earlier releases,
a majority of the applications in Erlang/OTP did not support upgrade. Many of the applications use the
restart_applicati oninstruction. These are applicationsfor whichit isnot crucial to support real soft upgrade,
for example, tools and library applications. Ther est art _appl i cat i on instruction ensures that all modulesin
the application are reloaded and thereby running the new code.

3.4.2 Upgrade of Core Applications

ThecoreapplicationsERTS, Kernel, STDLIB, and SASL never allow real soft upgrade, but requirethe Erlang emul ator
toberestarted. Thisisindicatedtother el ease_handl er by theupgradeinstructionr est art _new_enul at or.
Thisinstruction is always the very first instruction executed, and it restarts the emulator with the new versions of the
above mentioned core applications and the old versions of all other applications. When the node is back up, all other
upgrade instructions are executed, making sure each application is finally running its new version.

It might seem strange to do a two-step upgrade instead of just restarting the emulator with the new version of all
applications. The reason for this design decision is to alow code_change functions to have side effects, for
example, changing data on disk. It also guarantees that the upgrade mechanism for non-core applications does not
differ depending on whether or not core applications are changed at the same time.

If, however, the more brutal variant is preferred, the the rel ease upgrade file can be handwritten using only the single
upgradeinstructionr est art _ermul at or . Thisinstruction, in contrasttor est art _new_enul at or , causesthe
emulator to restart with the new versions of all applications.

Note: If other instructions are included before r est art _enul at or in the handwritten r el up file, they are
executed in the old emulator. This is a big risk since there is no guarantee that new beam code can be loaded into
the old emulator. Adding instructions after r est art _erul at or has no effect asthe r el ease_handl er will
not execute them.

For information about the release upgrade file, see the relup(4) manual page in SASL. For more information about
upgrade instructions, see the appup(4) manual pagein SASL.

3.4.3 Applications that Still do Not Allow Code Upgrade

A few applications, such as HiPE, do not support upgrade. Thisisindicated by an application upgrade file containing
only {Vsn,[],[]}.Any attempt at creating a release upgrade file with such input fails. The only way to force an
upgrade involving applications like thisis to handwrite the file r el up, preferably as described above with only the
restart_emul at or instruction.

3.5 Versions

3.5.1 OTP Version

Asof OTPrelease 17, the OTP release number corresponds to the major part of the OTP version. The OTP version as
aconcept wasintroduced in OTP 17. The version scheme used is described in detail in Version Scheme.

OTP of a specific version is a set of applications of specific versions. The application versions identified by an OTP
version corresponds to application versions that have been tested together by the Erlang/OTP team at Ericsson AB.
An OTP system can, however, be put together with applications from different OTP versions. Such a combination
of application versions has not been tested by the Erlang/OTP team. It is therefore always preferred to use OTP
applicationsfrom onesingle OTP version.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 53

3.5 Versions

Release candidates have an - r c<N> suffix. The suffix - r cO is used during development up to the first release
candidate.

Retrieving Current OTP Version

Inan OTP source code tree, the OTP version can beread from thetext file<OTP sour ce r oot >/ OTP_VERSI ON.
The absolute path to the file can be constructed by calling fil ename:join([code:root _dir(),
"OTP_VERSI ON']) .

In an installed OTP development system, the OTP version can be read from the text file <OTP
installation root>/releases/<OIP release nunber>/ OTP_VERSI ON. The absolute path
to the file can by constructed by caling fil enane:join([code:root _dir(), "rel eases",
erl ang: systeminfo(otp_release), "OIP_VERSION']).

If the version read from the OTP_VERSI ONfilein adevelopment system hasa* * suffix, the system has been patched
using the ot p_pat ch_appl y tool. In this case, the system consists of application versions from multiple OTP
versions. Theversion preceding the* * suffix correspondsto the OTP version of the base system that has been patched.
Notice that if a development system is updated by other meansthan ot p_pat ch_appl y, the file OTP_VERSI ON
can identify an incorrect OTP version.

No OTP_VERSI ONfileis placed in a target system created by OTP tools. This since one easily can create a target
system where it is hard to even determine the base OTP version. You can, however, place such afile there if you
know the OTP version.

OTP Versions Table

The text file <OTP source root>/otp_versions.table, whichis part of the source code, contains
information about al OTP versions from OTP 17.0 up to the current OTP version. Each line contains information
about application versions that are part of a specific OTP version, and has the following format:

<0tpVersion> : <ChangedAppVersions> # <UnchangedAppVersions> :

<Ot pVer si on> hasthe format OTP- <VSN>, that is, the same as the git tag used to identify the source.

<ChangedAppVer si ons> and <UnchangedAppVer si ons> are space-separated lists of application versions
and has the format <appl i cat i on>- <vsn>.

e <ChangedAppVer si ons> corresponds to changed applications with new version numbersin this OTP
version.

* <UnchangedAppVer si ons> corresponds to unchanged application versionsin this OTP version.

Both of them can be empty, but not at the sametime. If <ChangedAppVer si ons> isempty, no changes have been
made that change the build result of any application. This could, for example, be a pure bug fix of the build system.
The order of lines is undefined. All white-space characters in this file are either space (character 32) or line-break
(character 10).

By using ordinary UNIX toolslike sed and gr ep one can easily find answers to various questions like:
e Which OTPversionsareker nel - 3. 0 part of?

$ grep ' kernel-3\.0 ' otp_versions.table
¢ Inwhich OTPversionwasker nel - 3. 0 introduced?

$ sed 's/#.*//;] kernel-3\.0 /!d" otp_versions.table

The above commands give a bit more information than the exact answers, but adequate information when manually
searching for answers to these questions.

54 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.5 Versions

Theformat of theot p_ver si ons. t abl e might be subject to changes during the OTP 17 release.

3.5.2 Application Version

Asof OTP 17.0 application versions use the same version scheme as the OTP version. Application versions part of a
release candidate will however not have an - r c<N> suffix as the OTP version. Also note that a major increment in
an application version does not necessarily imply amajor increment of the OTP version. This depends on whether the
major change in the application is considered as a major change for OTP as awhole or not.

3.5.3 Version Scheme

The version scheme was changed as of OTP 17.0. This implies that application versions used prior to OTP 17.0
do not adhere to this version scheme. A list of application versions used in OTP 17.0 is included at the end of
this section

In the norma case, a version is constructed as <Maj or >. <M nor >. <Pat ch>, where <Maj or > is the most
significant part.

However, more dot-separated parts than this can exist. The dot-separated parts consist of non-negative
integers. If al parts less significant than <M nor > equas 0, they are omitted. The three normal parts
<Mnj or >. <M nor >. <Pat ch> are changed as follows:

e <Mnj or > - Increases when major changes, including incompatibilities, are made.
e <M nor > - Increases when new functionality is added.
e <Pat ch> - Increases when pure bug fixes are made.

When apart in the version number increases, all less significant parts are set to 0.

An application version or an OTP version identifies source code versions. That is, it implies nothing about how the
application or OTP has been built.

Order of Versions

Version numbersin general are only partially ordered. However, normal version numbers (with three parts) asof OTP
17.0 have atotal or linear order. This applies both to normal OTP versions and normal application versions.

When comparing two version numbers that have an order, one compare each part as ordinary integers from the most
significant part to less significant parts. The order is defined by the first parts of the same significance that differ.
An OTP version with alarger version includes all changes that are part of a smaller OTP version. The same goes for
application versions.

In general, versions can have more than three parts. The versions are then only partialy ordered. Such versions are
only used when branching off from another branch. When an extra part (out of the normal three parts) is added to
a version number, a new branch of versions is made. The new branch has a linear order against the base version.
However, versions on different branches have no order, and therefore one can only conclude that they all include what
isincluded in their closest common ancestor. When branching multiple times from the same base version, 0 parts are
added between the base version and the least significant 1 part until a unique version is found. Versions that have an
order can be compared as described in the previous paragraph.

Anexampleof branched versions: Theversion6. 0. 2. 1 isabranched versionfromthebaseversion6. 0. 2. Versions
ontheform 6. 0. 2. <X> can be compared with normal versions smaller than or equal to 6. 0. 2, and other versions
on the form 6. 0. 2. <X>. The version 6. 0. 2. 1 will include al changesin 6. 0. 2. However, 6. 0. 3 will most

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 55

3.5 Versions

likely not include al changesin 6. 0. 2. 1 (note that these versions have no order). A second branched version from
the base version 6. 0. 2 will beversion 6. 0. 2. 0. 1, and athird branched version will be 6. 0. 2. 0. 0. 1.

3.5.4 Releases and Patches

When a new OTP release is released it will have an OTP version on the form <Maj or >. 0 where the mgjor OTP
version number equalsthe release number. The major version number isincreased one step sincethelast major version.
All other OTP versions with the same major OTP version number are patches on that OTP release.

Patches are either released as maintenance patch packages or emergency patch packages. The only difference is
that maintenance patch packages are planned and usually contain more changes than emergency patch packages.
Emergency patch packages are released to solve one or more specific issues when such are discovered.

The release of a maintenance patch package usually imply an increase of the OTP <M nor > version while the
release of an emergency patch package usually imply an increase of the OTP <Pat ch> version. Thisis however not
necessarily always the case since changes of OTP versions are based on the actual changesin the code and not based
on whether the patch was planned or not. For more information see the Version Scheme section above.

3.5.5 OTP Versions Tree

All released OTP versions can be found in the OTP Versions Tree which is automatically updated whenever we
release anew OTP version. Note that every version number as such explicitly define its position in the version tree.
Nothing more than the version numbers are needed in order to construct the tree. The root of the tree is OTP version
17.0 which is when we introduced the new version scheme. The green versions are normal versions released on the
main track. Old OTP releases will be maintained for awhile on mai nt branchesthat have branched off from the main
track. Old mai nt branches always branch off from the main track when the next OTP release is introduced into the
main track. Versionson theseold mai nt branchesare marked blue. Besidesthe green and blue versions, therearealso
gray versions. These are versions on branches introduced in order to fix a specific problem for a specific customer on
aspecific base version. Brancheswith gray versions will typically become dead ends very quickly if not immediately.

3.5.6 OTP 17.0 Application Versions

The following list details the application versions that were part of OTP 17.0. If the normal part of an application
version number compares as smaller than the corresponding application versionin thelist, the version number does not
adhere to the version scheme introduced in OTP 17.0 and is to be considered as not having an order against versions
used as of OTP 17.0.

e asnl-3.0

e conmmon_test-1.8

e conpiler-5.0

» cosEvent-2.1.15

* cosEvent Donain-1.1. 14

+ cosFileTransfer-1.1.16

e cosNotification-1.1.21

e cosProperty-1.1.17

e cosTinme-1.1.14

 cosTransactions-1.2.14

e cCcrypto-3.3

 debugger-4.0

e dialyzer-2.7

e dianeter-1.6

*+ edoc-0.7.13

56 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

3.5 Versions

el dap-1.0.3

erl _docgen-0.3.5
erl _interface-3.7.16
erts-6.0

et-1.5
eunit-2.2.7
gs-1.5.16

hi pe-3.10.3
ic-4.3.5

i nets-5.10
jinterface-1.5.9
kernel -3.0
megaco-3.17.1
mesi a- 4. 12
observer-2.0
odbc-2. 10. 20

or ber-3. 6. 27
os_non-2. 2. 15
ose-1.0
otp_mbs-1.0.9
parsetool s-2.0. 11
percept-0.8.9
publ i c_key-0. 22
reltool-0.6.5
runtinme_tools-1.8.14
sasl-2.4
snnp-4.25.1
ssh-3.0.1
ssl-5.3.4
stdlib-2.0
syntax_tool s-1.6. 14
test _server-3.7
tool s-2.6. 14
typer-0.9.6
webt ool - 0. 8. 10
wx-1.2
xmerl-1.3.7

Ericsson AB. All Rights Reserved

.: Erlang/OTP System Documentation | 57

3.6 Support, Compatibility, Deprecations, and Removal

3.6 Support, Compatibility, Deprecations, and Removal

3.6.1 Introduction

This document describes strategy regarding supported Releases, compatibility, deprecations and removal of
functionality. This document was introduced in OTP 21. Actions taken regarding these issues before OTP 21 did not
adhere this document.

3.6.2 Supported Releases

In general, bugs are only fixed on the latest release, and new features are introduced in the upcoming release that is
under development. However, when we, due to internal reasons, fix bugs on older releases, these will be available
and announced as well.

Dueto the above, pull requests are only accepted on the mai nt andthemast er branchesin our git repository. The
mai nt branch contains changes planned for the next maintenance patch package on the latest OTP release and the
mast er branch contain changes planned for the upcoming OTP release.

3.6.3 Compatibility

We always strive to remain as compatible as possible even in the cases where we give no compatibility guarantees.

Different parts of the system will be handled differently regarding compatibility. The following items describe how
different parts of the system are handled.

Erlang Distribution

Erlang nodes can communicate across at least two preceding and two subsequent rel eases.
Compiled BEAM Code, NIF Libraries and Drivers

Compiled code can be loaded on at least two subsequent rel eases.

Loading on previous releases is not supported.
Compiled HiPE Code

Compiled HiPE code can be loaded on the exact same build of ERTS that was used when compiling the code. It
might however work on other builds, the emulator verifies checksumsin order to determineif it can load the code
or not. Notethat HiPE has somelimitations. For more information see the documentation of the HiPE application.

APIs

Compatible between releases.
Compiler Warnings

New warnings may be issued between rel eases.
Command Line Arguments

Incompatible changes may occur between releases.
OTP Build Procedures

Incompatible changes may occur between releases.

Under certain circumstances incompatible changes might be introduced even in parts of the system that should be
compatible between releases. Things that might trigger incompatible changes like this are;

Security Issues

It might be necessary to introduce incompatible changes in order to solve a security issue. This kind of
incompatibility might occur in a patch.

58 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

3.6 Support, Compatibility, Deprecations, and Removal

Bug Fixes

We will not be bug-compatible. A bug fix might introduce incompatible changes. This kind of incompatibility
might occur in a patch.

Severe Previous Design Issues

Some parts of OTP were designed a very long time ago and did not necessarily take today's computing
environmentsinto account. In some cases the consegquences of those design decisions are too severe. Thismay be
performance wise, scalability wise, etc. If we deem the consequencestoo severe, we might introduceincompatible
changes. Thiskind of incompatibility will not be introduced in a patch, but instead in the next release.

Peripheral, trace, and debug functionality isat greater risk of being changed in an incompatible way than functionality
in the language itself and core libraries used during operation.

3.6.4 Deprecation

Functionality is deprecated when new functionality is introduced that is preferred to be used instead of the old
functionality that isbeing deprecated. The deprecation doesnot imply removal of the functionality unless an upcoming
removal is explicitly stated in the deprecation.

Deprecated functionality will be documented as deprecated, and compiler warnings will be issued, when appropriate,
asearly as possible. That is, the new preferred functionality will appear at the same time as the deprecation is issued.
A new deprecation will at least be announced in a release note and the documentation.

3.6.5 Removal

Legacy solutions may eventually need to be removed. In such cases, they will be phased out on a long enough time
period to give users the time to adapt. Before removal of functionality it will be deprecated at least during one release
with an explicit announcement about the upcoming removal. A new deprecation will at least be announced in arelease
note and the documentation.

Peripheral, trace, and debug functionality is at greater risk of removal than functionality in thelanguage itself and core
libraries used during operation.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 59

4.1 Embedded Solaris

4 Embedded Systems User's Guide

This section describes the issues that are specific for running Erlang on an embedded system. It describes the
differencesin installing and starting Erlang compared to how it is done for a non-embedded system.

Thisis a supplementary section. Y ou also need to read Section 1 Installation Guide.

Thereis also target architecture-specific information in the top-level README file of the Erlang distribution.

4.1 Embedded Solaris

This section describes the operating system-specific parts of OTP that relate to Solaris.

4.1.1 Memory Use

Solaris takes about 17 MB of RAM on a system with 64 MB of total RAM. This leaves about 47 MB for the
applications. If the system uses swapping, these figures cannot be improved because unnecessary daemon processes
are swapped out. However, if swapping isdisabled, or if the swap spaceisof limited resourcein the system, it becomes
necessary to kill off unnecessary daemon processes.

4.1.2 Disk Space Use

The disk space required by Solaris can be minimized by using the Core User support installation. It requires about 80
MB of disk space. Thisinstalls only the minimum software required to boot and run Solaris. The disk space can be
further reduced by deleting unnecessary individual files. However, unless disk space is a critical resource the effort
required and the risks involved cannot be justified.

4.1.3 Installing an Embedded System

This section is about installing an embedded system. The following topics are considered:
* Creating user and installation directory

e Instaling an embedded system

» Configuring automatic start at boot

e Making a hardware watchdog available

* Changing permission for reboot

e Setting TERM environment variable

e Adding patches

* Installing module os_sup in application os_mon

Several of the procedures in this section require expert knowledge of the Solaris operating system. For most of them
super user privilege is needed.

Creating User and Installation Directory

It is recommended that the embedded environment is run by an ordinary user, that is, a user who does not have super
user privileges.

60 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.1 Embedded Solaris

In this section, it is assumed that the username isot puser and that the home directory of that user is:

/export/home/otpuser

It is also assumed that in the home directory of ot puser , thereisadirectory named ot p, the full path of whichis:

/export/home/otpuser/otp
Thisdirectory istheinstallation directory of the embedded environment.

Installing an Embedded System

The procedure for installing an embedded system isthe same asfor an ordinary system (see I nstallation Guide), except
for the following:

» The (compressed) tape archivefile isto be extracted in the installation directory defined above.
e |tisnot needed to link the start script to a standard directory like/ usr /| ocal / bi n.
Configuring Automatic Start at Boot

A true embedded system must start when the system boots. This section accounts for the necessary configurations
needed to achieve that.

The embedded system and all the applications start automatically if the script file shown below is added to directory
/ et c/rc3. d. Thefilemust be owned and readable by r oot . Its name cannot be arbitrarily assigned; the following
name is recommended:

S750tp.system

For more details on initialization (and termination) scripts, and naming thereof, see the Solaris documentation.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 61

4.1 Embedded Solaris

#!/bin/sh
#
File name: S75o0tp.system
Purpose: Automatically starts Erlang and applications when the
system starts
Author: janne@erlang.ericsson.se
Resides in: /etc/rc3.d
#
if [' -d /usr/bin]
then # /usr not mounted
exit
fi
killproc() { # kill the named process(es)

pid="/usr/bin/ps -e |
/usr/bin/grep -w $1 |
/usr/bin/sed -e 's/~ *//' -e 's/ .*//"°
["$pid" !'= ""] && kill $pid
}

Start/stop processes required for Erlang

case "$1" in
'start')
Start the Erlang emulator
#
su - otpuser -c "/export/home/otpuser/otp/bin/start" &
'stop')
killproc beam
*) r
echo "Usage: $0 { start | stop }"

esac

File/ export/ hone/ ot puser/ ot p/ bi n/ st art referred to in the above script is precisely the st art script
described in Starting Erlang. The script variable OTP_ROOT in that st art script corresponds to the following
example path used in this section:

/export/home/otpuser/otp

Thest art scriptisto be edited accordingly.

Useof theki | | pr oc procedure in the above script can be combined withacall toer| _cal | , for example:

$SOME_PATH/erl call -n Node init stop

To take Erlang down gracefully, seetheer | _cal | (1) manual pageiner| _i nt er f ace for details on the use of
erl _cal I . However, that requires that Erlang runs as a distributed node, which is not always the case.

Theki | | pr oc procedureisnot to be removed. The purpose is here to move from run level 3 (multi-user mode with
networking resources) to run level 2 (multi-user mode without such resources), in which Erlang is not to run.

Making Hardware Watchdog Available

For Solarisrunning on VME boards from Force Computers, the onboard hardware watchdog can be activated, provided
aVME busdriver is added to the operating system (see a so Installation Problems).

62 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.1 Embedded Solaris

Seedsotheheart (3) manual pagein Kernel.

Changing Permissions for Reboot

If the HEART _COVMAND environment variable isto be set inthe st ar t script in Starting Erlang, and if the value
isto be set to the path of the Solarisr eboot command, that is:

HEART COMMAND=/usr/sbin/reboot

then the ownership and file permissionsfor / usr/ sbi n/ r eboot must be changed as follows:

chown 0 /usr/sbin/reboot
chmod 4755 /usr/sbin/reboot

Seedsotheheart (3) manual pagein Kernel.

Setting TERM Environment Variable

When the Erlang runtime system is automatically started from the S750t p. syst emscript, the TERMenvironment
variable must be set. The following isaminimal setting:

TERM=sun
Thisisto be added to thest art script.

Adding Patches

For proper functioning of flushing file system data to disk on Solaris 2.5.1, the version-specific patch with number
103640-02 must be added to the operating system. Other patches might be needed, see the release README file
<ERL_| NSTALL_DI R>/ README.

Installing Module os_sup in Application os_mon
The following four installation procedures require super user privilege:

Installation
« Makea copy of the Solaris standard configuration filefor sysl ogd:

» Make acopy of the Solaris standard configuration file for sysl ogd. Thisfileis usually named
sysl og. conf and foundin directory / et c.

« Thefilename of the copy must besysl og. conf . ORI G Thedirectory location is optional; usualy itis/
et c. A simple way to do thisisto issue the following command:

cp /etc/syslog.conf /etc/syslog.conf.ORIG

* Makean Erlang-specific configuration filefor sysl ogd:
« Make an edited copy of the backup copy previously made.
« Thefilename must besysl og. conf . OTP. The path must be the same as the backup copy.

» Theformat of the configuration fileisfound inthesysl og. conf (5) manual page, by issuing the
command nan sysl og. conf.

e Usudly alineisadded that is to state:
* Which types of information that is to be supervised by Erlang
e Thename of thefile (actually a named pipe) that is to receive the information

« If, for example, only information originating from the UNIX kernel isto be supervised, thelineisto begin
with ker n. LEVEL. For the possible values of LEVEL, seesysl og. conf (5) .

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 63

4.1 Embedded Solaris

« After at least one tab-character, the line added is to contain the full name of the named pipe where
sysl ogd writesitsinformation. The path must be the same as for thefilessysl og. conf . ORI Gand
sysl og. conf . OTP. The filename must be sysl og. ot p.

e |f thedirectory for thefilessysl og. conf . ORI Gand sysl og. conf. OTPis/ et c, thelinein
sysl og. conf. OTPisasfollows:

kern.LEVEL /etc/syslog.otp

* Check thefile privileges of the configuration files:
e Theconfiguration filesisto haver w-r - - r - - file privileges and be owned by root.
* A smpleway to do thisis to issue these commands:
chmod 644 /etc/syslog.conf

chmod 644 /etc/syslog.conf.ORIG
chmod 644 /etc/syslog.conf.OTP

¢ Noticethat if thefilessysl og. conf . ORI Gandsysl og. conf . OTP are not in directory / et ¢, the
file path in the second and third command must be modified.
* Modify file privileges and owner ship of the nod_sysl og utility:
« Thefile privileges and ownership of the nod_sysl og utility must be modified.

« The full name of the binary executable file is derived from the position of application os_non in the file
system by adding / pri v/ bi n/ nod_sysl og. The generic full name of the binary executable fileisthus:

<0TP_ROOT>/1ib/0os_mon-<REV>/priv/bin/mod_syslog

Example: If thepathto ot p- r oot is/ usr/ ot p, thenthe pathtotheos_non applicationis/ usr/ ot p/
I'i b/ os_non- 1. 0 (assuming revision 1.0) and the full name of the binary executablefileis/ usr/ ot p/
i b/os_non-1.0/priv/bin/nmd_sysl og.

e Thebinary executable file must be owned by root, haver wsr - xr - x file privileges, in particular the
set ui d bit of the user must be set.

* A simpleway to do thisisto issue the following commands:

cd <O0TP_ROOT>/1lib/os _mon-<REV>/priv/bin/mod_syslog
chmod 4755 mod syslog
chown root mod syslog

Testing the Application Configuration File
The following procedure does not require root privilege:

» Ensurethat the configuration parameters for the os_sup module in the os_non application are correct.
* Browse the application configuration file (do not edit it). The full name of the application configuration file is
derived from the position of the os_non application in the file system by adding / ebi n/ os_non. app.

The generic full name of thefileisthus:
<0TP_RO0OT>/1ib/0s_mon-<REV>/ebin/os_mon.app.

Example: If the path to ot p- r oot is/ usr/ ot p, then the path to the os_non application is/ usr/ ot p/
lib/os_non-1.0 (assuming revision 1.0) and the full name of the binary executable fileis/ usr/ ot p/
i b/ os_non-1. 0/ ebi n/ os_non. app.

» Ensurethat the following configuration parameters have correct values:

Parameter Function Standard value

64 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.1 Embedded Solaris

t r ue for thefirst instance on the
hardware; f al se for the other
instances

Specifiesif os_sup isto be started

start_os_sup of not

The directory for (1) back-up copy
0S_Ssup_own and (2) Erlang-specific configuration | "/ et c"
filefor sysl ogd

The full name for the Solaris

os_sup_sysl ogconf standard configuration file for "/etc/sysl og. conf"
sysl ogd
The tag for the messages that are

error_tag sent to the error logger inthe Erlang |std_error

runtime system

Table 1.1: Configuration Parameters

If the values listed in 0s_non. app do not suit your needs, do not edit that file. Instead override the values in a
system configuration file, the full pathname of which is given on the command linetoer | .

Example: Contents of an application configuration file:

[{os _mon, [{start os sup, true}, {os sup own, "/etc"},
{os_sup_syslogconf, "/etc/syslog.conf"}, {os sup errortag, std error}]}].

Related Documents

Seetheos_non(3) application, theappl i cati on(3) manual pagein Kernel, andtheer| (1) manual pagein
ERTS.

Installation Problems

The hardware watchdog timer, which is controlled by the hear t port program, requires package FORCEv e, which
contains the VME bus driver, to be installed. However, this driver can clash with the Sun ncp driver and cause the
system to refuse to boot. To cure this problem, the following lines areto be added to / et ¢/ syst em

e« exclude: drv/ntp

e exclude: drv/ntpzsa

e exclude: drv/ntpp

It is recommended to add these lines to avoid a clash. The clash can make it impossible to boot the system.

4.1.4 Starting Erlang

This section describes how an embedded system is started. Four programs are involved and they normally residein the
directory <ERL_I NSTALL_DI R>/ bi n. Theonly exceptionisthest art program, which can be located anywhere,
and is also the only program that must be modified by the user.

In an embedded system, thereis usually no interactive shell. However, an operator can attach to the Erlang system by
commandt o_er | . The operator is then connected to the Erlang shell and can give ordinary Erlang commands. All
interaction with the system through this shell islogged in a special directory.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 65

4.1 Embedded Solaris

Basically, the procedure is as follows:

 Thestart programis called when the machineis started.
e ltcalsrun_erl ,which setsup things so the operator can attach to the system.

* ltcalsstart_erl,whichcalsthe correct version of er | exec (whichislocated in
<ERL_I NSTALL_DI R>/ ert s- EVsn/ bi n) with the correct boot and confi g files.

4.1.5 Programs

start

Thisprogram is called when the machineis started. It can be modified or rewritten to suit aspecia system. By defaullt,
it must be called st art and residein <ERL_I NSTALL_DI R>/ bi n. Another start program can be used, by using
configuration parameter st art _pr g in application SASL.

The start program must call r un_er | as shown below. It must also take an optional parameter, which defaults to
<ERL_|I NSTALL_DI R>/rel eases/start_erl . data.

This program is to set static parameters and environment variables such as - snane Name and HEART _COMVAND
to reboot the machine.

The<RELDI R> directory iswhere new rel ease packets are installed, and where the rel ease handler keepsinformation
about releases. For more information, seether el ease_handl er (3) manual pagein SASL.

The following script illustrates the default behaviour of the program:

#!/bin/sh

Usage: start [DataFile]
#

ROOTDIR=/usr/local/otp

if [-z "$RELDIR"]

then
RELDIR=$RO0OTDIR/releases

fi

START_ERL_DATA=${1:-$RELDIR/start_erl.data}

$ROOTDIR/bin/run_erl /tmp/ $ROOTDIR/log "exec $ROOTDIR/bin/start erl \
$ROOTDIR $RELDIR $START ERL DATA" > /dev/null 2>&1 &

The following script illustrates a modification where the node is given the name cp1, and where the environment
variables HEART _COMMAND and TERMhave been added to the previous script:

#!/bin/sh

Usage: start [DataFile]

#

HEART COMMAND=/usr/sbin/reboot
TERM=sun

export HEART COMMAND TERM

ROOTDIR=/usr/local/otp
if [-z "$RELDIR"]
then
RELDIR=$RO0OTDIR/releases
fi
START ERL DATA=${1:-$RELDIR/start erl.data}

$ROOTDIR/bin/run_erl /tmp/ $ROOTDIR/log "exec $ROOTDIR/bin/start erl \
$ROOTDIR $RELDIR $START ERL DATA -heart -sname cpl" > /dev/null 2>&1 &

66 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.1 Embedded Solaris

If adiskless and/or read-only client node is about to start, filest art _er | . dat a islocated in the client directory
at the master node. Thus, the START _ERL_DATAlineisto look like:

CLIENTDIR=$ROOTDIR/clients/clientname
START ERL DATA=${1:-$CLIENTDIR/bin/start erl.data}
run_erl

This program is used to start the emulator, but you will not be connected to the shell. t o_er | is used to connect
to the Erlang shell.

Usage: run_erl pipe dir/ log dir "exec command [parameters ...]"

Here:

e pipe_dir/ istobe/tnp/ (to_erl usesthisname by default).
e | og_dir iswherethelog files are written.

« comand [paranet er s] isexecuted.

« Everything writtento st di n and st dout isloggedinl og di r.

Log filesare written in| og_di r . Each log file has a name of the form er | ang. | og. N, where N is a generation
number, ranging from 1 to 5. Each log file holds up to 100 kB text. Astime goes by, the following log files are found
in thelog file directory:

erlang.log.1

erlang.log.1l, erlang.log.2

erlang.log.1, erlang.log.2, erlang.log.3

erlang.log.1l, erlang.log.2, erlang.log.3, erlang.log.4
erlang.log.2, erlang.log.3, erlang.log.4, erlang.log.5
erlang.log.3, erlang.log.4, erlang.log.5, erlang.log.1

The most recent log file is the rightmost in each row. That is, the most recent file is the one with the highest number,
or if there are already four files, the one before the skip.

When alog fileis opened (for appending or created), atime stamp iswritten to thefile. If nothing has been written to
thelog files for 15 minutes, arecord isinserted that says that we are still alive.

to_erl

This program is used to attach to a running Erlang runtime system, started withr un_er | .
Usage: to erl [pipe name | pipe dir]

Herepi pe_nane defaultsto/ t np/ er | ang. pi pe. N.

To disconnect from the shell without exiting the Erlang system, typeCt r | - D.

start_erl

This program starts the Erlang emulator with parameters - boot and - conf i g set. It reads data about where these
filesarelocated from afilenamedst art _er| . dat a, whichislocated in <RELDI R>. Each new release introduces
anew datafile. Thisfileis automatically generated by the release handler in Erlang.

The following script illustrates the behaviour of the program:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 67

4.2 Windows NT

#!/bin/sh

This program is called by run erl. It starts
the Erlang emulator and sets -boot and -config parameters.

#
#
#
It should only be used at an embedded target system.
#
#

Usage: start _erl RootDir RelDir DataFile [ErlFlags ...]
#

ROOTDIR=$1

shift

RELDIR=$1

shift

DataFile=$1

shift

ERTS VSN="awk '{print $1}' $DataFile"
VSN="awk '{print $2}' $DataFile"

BINDIR=$ROOTDIR/erts-$ERTS VSN/bin
EMU=beam

PROGNAME="echo $0 | sed 's/.*\///"
export EMU

export ROOTDIR

export BINDIR

export PROGNAME

export RELDIR

exec $BINDIR/erlexec -boot $RELDIR/$VSN/start -config $RELDIR/$VSN/sys $*

If adiskless and/or read-only client node with the SASL configuration parameter st at i ¢_enul at or settot rue
is about to start, the - boot and - conf i g flags must be changed.

Assuch aclient cannot read anew st art _er | . dat a file (the file cannot be changed dynamically). The boot and
config files are always fetched from the same place (but with new contents if a new release has been installed).

Ther el ease_handl er copiesthesefilestothebi n directory in the client directory at the master nodes whenever
anew release is made permanent.

Assuming the same CLI ENTDI R as above, the last lineisto look like:

exec $BINDIR/erlexec -boot $CLIENTDIR/bin/start \
-config $CLIENTDIR/bin/sys $*

4.2 Windows NT

This section describes the operating system-specific parts of OTP that relate to Windows NT.

A normal installation of Windows NT 4.0, with Service Pack 4 or later, is required for an embedded Windows NT
running OTP.

4.2.1 Memory Use

RAM memory of 96 MB is recommended to run OTP on Windows NT. A system with less than 64 MB of RAM is
not recommended.

4.2.2 Disk Space Use
A minimum Windows NT installation with networking needs 250 MB, and an extra 130 MB for the swap file.

68 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Windows NT

4.2.3 Installing an Embedded System

Normal Windows NT installation is performed. No additional application programs are needed, such as Internet
Explorer or web server. Networking with TCP/IPis required.

Service Pack 4 or later must be installed.

Hardware Watchdog

For Windows NT running on standard PCs with 1SA and/or PCI bus, an extension card with a hardware watchdog
can beinstalled.

For moreinformation, seethe hear t (3) manual pagein Kernel.

4.2.4 Starting Erlang

On an embedded system, theer | sr v moduleisto be used to install the Erlang process as a Windows system service.
This service can start after Windows NT has booted.

For moreinformation, seetheer | sr v manua page in ERTS.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 69

5.1 Introduction

5 Getting Started With Erlang

5.1 Introduction

This section is a quick start tutorial to get you started with Erlang. Everything in this section is true, but only part of
thetruth. For example, only the simplest form of the syntax is shown, not all esoteric forms. Also, partsthat are greatly
simplified are indicated with *manual*. This means that a lot more information on the subject is to be found in the
Erlang book or in Erlang Reference Manual.

5.1.1 Prerequisites
The reader of this section is assumed to be familiar with the following:

e Computersin general
e Basicson how computers are programmed

5.1.2 Omitted Topics

The following topics are not treated in this section:

* References.

» Local error handling (catch/throw).

e Singledirection links (monitor).

* Handling of binary data (binaries/ bit syntax).
e List comprehensions.

e How to communicate with the outside world and software written in other languages (ports); thisis described in
Interoperability Tutorial.

* Erlang libraries (for example, file handling).

e OTPand (in consequence) the Mnesia database.
* Hashtablesfor Erlang terms (ETS).

e Changing code in running systems.

5.2 Sequential Programming
5.2.1 The Erlang Shell

Most operating systems have acommand interpreter or shell, UNIX and Linux have many, Windows hasthe command
prompt. Erlang hasits own shell wherebits of Erlang code can bewritten directly, and be eval uated to see what happens
(see the shell(3) manual pagein STDLIB).

Start the Erlang shell (in Linux or UNIX) by starting a shell or command interpreter in your operating system and
typing er | . You will see something like this.

% erl
Erlang R15B (erts-5.9.1) [source] [smp:8:8] [rq:8] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.9.1 (abort with "G)
1>

70 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Sequential Programming

Type "2 + 5." in the shell and then press Enter (carriage return). Notice that you tell the shell you are done entering

code by finishing with afull stop "." and a carriage return.

1> 2 + 5.
7
2>

As shown, the Erlang shell numbers the lines that can be entered, (as 1> 2>) and that it correctly saysthat 2 + 5is 7.
If you make writing mistakes in the shell, you can delete with the backspace key, as in most shells. There are many
more editing commands in the shell (seetty - A command line interface in ERTS User's Guide).

(Notice that many line numbers given by the shell in the following examples are out of sequence. Thisis because this
tutorial was written and code-tested in separate sessions).

Hereis a bit more complex calculation:

2> (42 + 77) * 66 / 3.
2618.0

Notice the use of brackets, the multiplication operator "*", and the division operator "/", asin normal arithmetic (see
Expressions).

Press Control-C to shut down the Erlang system and the Erlang shell.

The following output is shown:

BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (1)oaded
(v)ersion (k)ill (D)b-tables (d)istribution

o° @

Type"a" to leave the Erlang system.
Another way to shut down the Erlang system is by entering hal t () :

3> halt().

)
)

5.2.2 Modules and Functions

A programming language is not much use if you only can run code from the shell. So hereisasmall Erlang program.
Enteritinto afilenamedt ut . er| using a suitable text editor. The filenamet ut . er | isimportant, and a so that
it is in the same directory as the one where you started er |). If you are lucky your editor has an Erlang mode that
makes it easier for you to enter and format your code nicely (see The Erlang mode for Emacsin Tools User's Guide),
but you can manage perfectly well without. Here is the code to enter:

-module(tut).
-export([double/1]).

double(X

(->
2 x

)
X.
It is not hard to guess that this program doubles the value of numbers. The first two lines of the code are described
later. Let us compile the program. This can be done in an Erlang shell as follows, where ¢ means compile:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 71

5.2 Sequential Programming

3> c(tut).
{ok, tut}

The { ok, t ut } means that the compilation is OK. If it says "error" it means that there is some mistake in the text
that you entered. Additional error messages gives an idea to what is wrong so you can modify the text and then try
to compile the program again.

Now run the program:

4> tut:double(10).
20

As expected, double of 10is 20.
Now let us get back to thefirst two lines of the code. Erlang programs are written in files. Each file contains an Erlang
module. Thefirst line of code in the module is the module name (see Modules):

-module(tut).

Thus, the module is called tut. Notice the full stop "." at the end of the line. The files which are used to store the
module must have the same name as the module but with the extension ".erl”. In this case the filenameist ut . er| .
When using a function in another module, the syntax nodul e_nane: f uncti on_nane(ar gurment s) is used.
So the following means call function doubl e in modulet ut with argument "10".

4> tut:double(10).

The second line says that the module t ut contains a function called doubl e, which takes one argument (X in our
example):

-export([double/1]).

The second line also says that this function can be called from outside the modulet ut . More about this later. Again,
noticethe"." at the end of theline.

Now for a more complicated example, the factorial of a number. For example, the factorial of 4is4* 3* 2* 1,
which eguals 24.

Enter the following codein afilenamedt ut 1. er| :

-module(tutl).
-export([fac/1]1).

fac(l) ->
1;
fac(N) ->
N * fac(N - 1).
So thisisamodule, called t ut 1 that contains afunction called f ac>, which takes one argument, N.
Thefirst part says that the factorial of 1is1.:

fac(l) ->
1;

Notice that this part ends with asemicolon ;" that indicates that there is more of the function f ac> to come.
The second part says that the factorial of N isN multiplied by the factorial of N - 1:

72 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Sequential Programming

fac(N) ->
N * fac(N - 1).

Notice that this part ends with a"." saying that there are no more parts of this function.

Compilethefile:
5> c(tutl).
{ok, tutl}
And now calculate the factorial of 4.
6> tutl:fac(4).
24
Here the function f ac> in modulet ut 1 is called with argument 4.

A function can have many arguments. Let us expand the modulet ut 1 with the function to multiply two numbers:

-module(tutl).
-export([fac/1, mult/2]).

fac(l) ->
1;
fac(N) ->

N * fac(N - 1).
mult(X, Y) ->
X *Y.
Notice that it is aso required to expand the - expor t line with the information that there is another function nul t
with two arguments.

Compile:
7> c(tutl).
{ok, tutl}
Try out the new function mul t :
8> tutl:mult(3,4).
12

In this example the numbers areintegers and the argumentsin the functionsin the code N, X, and Y are called variables.
Variables must start with a capital letter (see Variables). Examples of variables are Nunber , ShoeSi ze, and Age.

5.2.3 Atoms

Atomisanother datatypein Erlang. Atomsstart with asmall letter (see Atom), for example, char | es,centi net er,
andi nch. Atoms are simply names, nothing else. They are not like variables, which can have avalue.

Enter the next program in afilenamed t ut 2. er |). It can be useful for converting from inches to centimeters and
conversely:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 73

5.2 Sequential Programming

-module(tut2).
-export([convert/2]).

convert(M, inch) ->
M/ 2.54;

convert(N, centimeter) ->
N * 2.54,

Compile:

9> c(tut2).
{ok, tut2}

Test:

10> tut2:convert(3, inch).
1.1811023622047243

11> tut2:convert(7, centimeter).
17.78

Notice the introduction of decimals (floating point numbers) without any explanation. Hopefully you can cope with
that.

Let us see what happensif something other than cent i met er ori nch isenteredintheconvert function:

12> tut2:convert(3, miles).
** exception error: no function clause matching tut2:convert(3,miles) (tut2.erl, line 4)

The two parts of theconver t function are called its clauses. As shown, mi | es isnot part of either of the clauses.
The Erlang system cannot match either of the clauses so an error message f unct i on_cl ause isreturned. The
shell formats the error message nicely, but the error tuple is saved in the shell's history list and can be output by the
shell command v/ 1:

13> v(12).
{'EXIT',{function clause, [{tut2,convert,
[3,miles],
[{file, "tut2.erl"},{line,4}1},
{erl _eval,do apply,6,
[{file,"erl eval.erl"},{line,677}1},
{shell,exprs,7,[{file,"shell.erl"},{line,687}1},
{shell,eval exprs,7,[{file,"shell.erl"},{line,642}1},
{shell,eval loop,3,
[{file,"shell.erl"},{line,627}1}1}}
5.2.4 Tuples

Now thet ut 2 program is hardly good programming style. Consider:
tut2:convert(3, inch).

Does this mean that 3 isin inches? Or does it mean that 3 isin centimeters and is to be converted to inches? Erlang
has a way to group things together to make things more understandable. These are called tuples and are surrounded
by curly brackets, "{" and "}".

So, {i nch, 3} denotes 3 inchesand { centi et er, 5} denotes 5 centimeters. Now let us write a new program
that converts centimeters to inches and conversely. Enter the following codein afilecaledt ut 3. er |):

74 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Sequential Programming

-module(tut3).
-export([convert length/1]).

convert length({centimeter, X}) ->
{inch, X / 2.54};

convert length({inch, Y}) ->
{centimeter, Y * 2.54}.

Compile and test:

14> c(tut3).

{ok, tut3}

15> tut3:convert length({inch, 5}).

{centimeter,12.7}

16> tut3:convert length(tut3:convert length({inch, 5})).
{inch,5.0}

Notice on line 16 that 5 inches is converted to centimeters and back again and reassuringly get back to the
origina value. That is, the argument to a function can be the result of another function. Consider how line 16
(above) works. The argument given to the function {i nch, 5} is first matched against the first head clause of
convert | ength,thatis convert | ength({centimeter, X}). It canbeseenthat {centineter, X}
does not match {i nch, 5} (the head is the bit before the "->"). This having failed, let us try the head of the next
clausethat is, convert _| engt h({i nch, Y}). Thismatches, and Y getsthe value 5.

Tuples can have more than two parts, in fact as many parts as you want, and contain any valid Erlang term. For
example, to represent the temperature of various cities of the world:

{moscow, {c, -10}}
{cape_town, {f, 70}}
{paris, {f, 28}}

Tuples have a fixed number of items in them. Each item in atuple is called an element. In the tuple { nroscow,
{c,-10}},element 1lisnoscowand element 2is{ c, - 10} . Here c represents Celsiusand f Fahrenheit.

5.2.5 Lists

Whereas tuples group things together, it is a'so needed to represent lists of things. Listsin Erlang are surrounded by
square brackets, "[" and "]". For example, alist of the temperatures of various cities in the world can be;

[{moscow, {c, -10}}, {cape town, {f, 70}}, {stockholm, {c, -4}},
{paris, {f, 28}}, {london, {f, 36}}1]

Notice that this list was so long that it did not fit on one line. This does not matter, Erlang allows line breaks at all
"sensible places" but not, for example, in the middle of atoms, integers, and others.

A useful way of looking at parts of lists, isby using "[". Thisis best explained by an example using the shell:

17> [First |TheRest] = [1,2,3,4,5].
[1,2,3,4,5]

18> First.

1

19> TheRest.

[2,3,4,5]

To separate the first elements of the list from the rest of the list, | isused. Fi r st has got value 1 and TheRest
has got the value [2,3,4,5].

Another example:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 75

5.2 Sequential Programming

20> [E1, E2 | R] = [1,2,3,4,5,6,7].
[1,2,3,4,5,6,7]

21> E1.

1

22> E2.

2

23> R.

[3,4,5,6,7]

Here you seethe use of | to get the first two elements from the list. If you try to get more elements from the list than
there are elementsin the list, an error is returned. Notice also the special case of the list with no elements, []:

24> [A, B | C] = [1, 2].
[1,2]

25> A.

1

26> B.

2

27> C.

[1

In the previous examples, new variable names are used, instead of reusing the old ones: Fi r st , TheRest , E1, E2,
R, A, B, and C. Thereason for thisisthat a variable can only be given avalue oncein its context (scope). More about
thislater.

The following example shows how to find the length of alist. Enter the following codein afilenamedt ut 4. er|):
-module(tut4).
-export([list length/1]).
list length([]) ->
1ist?{ength([First | Rest]) ->
1 + list length(Rest).

Compile and test:

28> c(tut4).

{ok, tutd}

29> tut4:1list length([1,2,3,4,5,6,7]).
7

Explanation:

list length([]) ->
0;

The length of an empty list is obviously O.

list length([First | Rest]) ->
1 + list length(Rest).

Thelength of alist with thefirst element Fi r st and the remaining elements Rest is 1 + thelength of Rest .
(Advanced readers only: Thisis not tail recursive, there is a better way to write this function.)

In general, tuples are used where "records’ or "structs' are used in other languages. Also, lists are used when
representing things with varying sizes, that is, where linked lists are used in other languages.

76 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Sequential Programming

Erlang does not have a string data type. Instead, strings can be represented by lists of Unicode characters. Thisimplies
for example that thelist [97, 98, 99] isequivalent to "abc". The Erlang shell is"clever" and guesses what list you
mean and outputsit in what it thinks is the most appropriate form, for example:

30> [97,98,99].
"abc"
5.2.6 Maps

Maps are a set of key to value associations. These associations are encapsulated with "#{" and "}". To create an
association from "key" to value 42:

> #{ "key" => 42 }.
#{ n keyll => 42}

Let usjump straight into the deep end with an example using some interesting features.

Thefollowing example shows how to cal culate al pha blending using mapsto reference color and a phachannels. Enter
thecodeinafilenamed col or. erl):

-module(color).
-export([new/4, blend/2]).
-define(is channel(V), (is float(V) andalso V >= 0.0 andalso V =< 1.0)).
new(R,G,B,A) when ?is channel(R), ?is channel(G),
?is channel(B), ?is channel(A) ->

#{red => R, green => G, blue => B, alpha => A}.

blend(Src,Dst) ->
blend(Src,Dst,alpha(Src,Dst)).

blend(Src,Dst,Alpha) when Alpha > 0.0 ->

Dst#{
red = red(Src,Dst) / Alpha,
green := green(Src,Dst) / Alpha,
blue = blue(Src,Dst) / Alpha,
alpha := Alpha

+i

blend(,Dst,) ->

Dst#{
red = 0.0,
green := 0.0,
blue := 0.0,
alpha := 0.0

}.

alpha(#{alpha := SA}, #{alpha := DA}) ->
SA + DA*(1.0 - SA).

red(#{red := SV, alpha := SA}, #{red := DV, alpha := DA}) ->
SV*SA + DV*DA*(1.0 - SA).

green(#{green := SV, alpha := SA}, #{green := DV, alpha := DA}) ->
SV*SA + DV*DA*(1.0 - SA).

blue(#{blue := SV, alpha := SA}, #{blue := DV, alpha := DA}) ->
SV*SA + DV*DA*(1.0 - SA).

Compile and test:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 77

5.2 Sequential Programming

> c(color).

{ok,color}

> Cl = color:new(0.3,0.4,0.5,1.0).

#{alpha => 1.0,blue => 0.5,green => 0.4,red => 0.3}
> C2 = color:new(1.0,0.8,0.1,0.3).

#{alpha => 0.3,blue => 0.1,green => 0.8,red => 1.0}

> color:blend(C1,C2).

#{alpha => 1.0,blue => 0.5,green => 0.4,red => 0.3}

> color:blend(C2,C1).

#{alpha => 1.0,blue => 0.38,green => 0.52,red => 0.51}

This example warrants some explanation:
-define(is channel(V), (is float(V) andalso V >= 0.0 andalso V =< 1.0)).

Firstamacroi s_channel isdefined to help with the guard tests. Thisis only here for convenience and to reduce
syntax cluttering. For more information about macros, see The Preprocessor.

new(R,G,B,A) when ?is channel(R), ?is channel(G),
?is channel(B), ?is channel(A) ->
#{red => R, green => G, blue => B, alpha => A}.

The function new 4 creates a new map term and lets the keysr ed, gr een, bl ue, and al pha be associated with
an initial value. In this case, only float values between and including 0.0 and 1.0 are allowed, as ensured by the ?
i s_channel / 1 macro for each argument. Only the => operator is allowed when creating a new map.

By calling bl end/ 2 on any color term created by new/ 4, the resulting color can be calculated as determined by
the two map terms.

Thefirst thing bl end/ 2 doesisto calculate the resulting alpha channel:

alpha(#{alpha := SA}, #{alpha := DA}) ->
SA + DA*(1.0 - SA).

The value associated with key al pha isfetched for both arguments using the : = operator. The other keysin the map
areignored, only the key al pha isrequired and checked for.

Thisisalso the case for functionsr ed/ 2, bl ue/ 2, and gr een/ 2.

red(#{red := SV, alpha := SA}, #{red := DV, alpha := DA}) ->
SV*SA + DV*DA*(1.0 - SA).

The difference hereis that a check is made for two keysin each map argument. The other keys are ignored.
Finally, let us return the resulting color in bl end/ 3:

blend(Src,Dst,Alpha) when Alpha > 0.0 ->

Dst#{
red = red(Src,Dst) / Alpha,
green := green(Src,Dst) / Alpha,
blue := blue(Src,Dst) / Alpha,
alpha := Alpha

I3

The Dst map is updated with new channel values. The syntax for updating an existing key with a new value is with
the: = operator.

5.2.7 Standard Modules and Manual Pages

Erlang has many standard modules to help you do things. For example, the module i o contains many functions that
help in doing formatted input/output. To look up information about standard modules, the command er | - man can

78 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Sequential Programming

be used at the operating shell or command prompt (the same place as you started er |). Try the operating system
shell command:

% erl -man io
ERLANG MODULE DEFINITION i0(3)

MODULE
io - Standard I/0 Server Interface Functions

DESCRIPTION
This module provides an interface to standard Erlang IO
servers. The output functions all return ok if they are suc-

If this does not work on your system, the documentation isincluded asHTML in the Erlang/OTP release. Y ou can also
read the documentation asHTML or download it as PDF from either of the sites www.erlang.se (commercia Erlang)
or www.erlang.org (open source). For example, for Erlang/OTP release R9B:

http://www.erlang.org/doc/r9b/doc/index.html

5.2.8 Writing Output to a Terminal

Itisniceto beableto do formatted output in exampl es, so the next example showsasimpleway tousethei o: f or mat
function. Like all other exported functions, you can test thei o: f or mat function in the shell:

31> io:format("hello world~n", [1).

hello world

ok

32> io:format("this outputs one Erlang term: ~w~n", [hello]).

this outputs one Erlang term: hello

ok

33> io:format("this outputs two Erlang terms: ~w~w~n", [hello, world]).
this outputs two Erlang terms: helloworld

ok

34> io:format("this outputs two Erlang terms: ~w ~w~n", [hello, world]).
this outputs two Erlang terms: hello world

ok

The function f or mat / 2 (that is, f or mat with two arguments) takes two lists. The first oneis nearly aways alist
written between " ". Thislist is printed out as it is, except that each ~w is replaced by a term taken in order from the
second list. Each ~nisreplaced by anew line. Thei o: f or mat / 2 function itself returns the atom ok if everything
goes as planned. Like other functions in Erlang, it crashes if an error occurs. This is not a fault in Erlang, it isa
deliberate policy. Erlang has sophisticated mechanisms to handle errors which are shown later. As an exercise, try to
makei o: f or mat crash, it should not be difficult. But notice that although i o: f or mat crashes, the Erlang shell
itself does not crash.

5.2.9 A Larger Example

Now for a larger example to consolidate what you have learnt so far. Assume that you have a list of temperature
readings from a number of citiesin the world. Some of them arein Celsius and some in Fahrenheit (asin the previous
list). First let us convert them all to Celsius, then let us print the data neatly.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 79

5.2 Sequential Programming

%% This module is in file tut5.erl

-module(tut5).
-export([format temps/1]).

%% Only this function is exported

format temps([])-> % No output for an empty list
ok;

format temps([City | Rest]) ->
print temp(convert to celsius(City)),
format temps(Rest).

convert to celsius({Name, {c, Temp}}) -> % No conversion needed
{Name, {c, Temp}};

convert to celsius({Name, {f, Temp}}) -> % Do the conversion
{Name, {c, (Temp - 32) * 5 / 9}}.

print _temp({Name, {c, Temp}}) ->
io:format("~-15w ~w c~n", [Name, Temp]).

35> c(tut5).

{ok, tut5}

36> tut5:format temps([{moscow, {c, -10}}, {cape town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}1).

moscow -10 ¢

cape_town 21.11111111111111 ¢
stockholm -4 c

paris -2.2222222222222223 ¢
london 2.2222222222222223 ¢
ok

Before looking at how this program works, notice that afew comments are added to the code. A comment starts with
a %-character and goes on to the end of the line. Notice also that the- export ([f or mat _t enps/ 1]). lineonly
includes the function f or mat _t enps/ 1. The other functions are local functions, that is, they are not visible from
outside the module t ut 5.

Notice also that when testing the program from the shell, the input is spread over two lines as the line was too long.

When f or mat _t enps iscaledthefirsttime, Ci ty getsthevaue{noscow, { ¢, - 10} } and Rest istherest of
thelist. Sothefunction pri nt _tenp(convert to_cel si us({noscow, {c,-10}})) iscaled.

Here is a function call as convert to_cel si us({noscow, {c, -10}}) as the argument to the function
print _t enp. When function calls are nested like this, they execute (evaluate) from the inside out. That is, first
convert _to_cel sius({noscow,{c,-10}}) is evauated, which gives the value { roscow, {c, - 10} }
as the temperature is aready in Celsius. Then pri nt _t enp({noscow, {c, - 10} }) isevauated. The function
convert to_cel sius worksinasimilar way totheconvert | engt h function in the previous example.

print_tenpsmply calsi o: f or mat inasimilar way to what has been described above. Notice that ~-15w says
to print the "term" with afield length (width) of 15 and left justify it. (see the io(3)) manual page in STDLIB.

Now f ormat _t enps(Rest) is caled with the rest of the list as an argument. This way of doing things is
similar to the loop constructs in other languages. (Y es, thisis recursion, but do not let that worry you.) So the same
format _t enps function is called again, thistime Ci t y gets the value { cape_t own, {f, 70} } and the same
procedure is repeated as before. This is done until the list becomes empty, that is [], which causes the first clause
format _tenps([]) tomatch. Thissimply returns (resultsin) the atom ok, so the program ends.

5.2.10 Matching, Guards, and Scope of Variables

It can be useful to find the maximum and minimum temperature in lists like this. Before extending the program to do
this, let uslook at functions for finding the maximum value of the elementsin alist:

80 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Sequential Programming

-module(tut6).
-export([list max/1]).

list max([Head|Rest]) ->
list max(Rest, Head).

list max([], Res) ->
Res;

list max([Head|Rest], Result so far) when Head > Result so far ->
list max(Rest, Head);

list max([Head|Rest], Result so far) ->
list max(Rest, Result so far).

37> c(tutb).

{ok, tut6}

38> tut6:list max([1,2,3,4,5,7,4,3,2,11).
7

First notice that two functions have the same name, | i st _nax. However, each of these takes a different number of
arguments (parameters). In Erlang these are regarded as compl etely different functions. Where you need to distinguish
between these functions, you write Name/Arity, where Name is the function name and Arity is the number of
arguments, inthiscasel i st _nmax/ 1 andli st_max/ 2.

In this example you walk through a list "carrying" avalue, in thiscase Result _so_far.list_max/ 1 simply
assumes that the max value of the list isthe head of the list and calls| i st _nax/ 2 with the rest of the list and the
value of the head of the list. In the above thiswould bel i st _max([2, 3,4,5,7, 4, 3,2,1],1).If you tried
tousel i st _nmax/ 1 with an empty list or tried to use it with something that is not alist at all, you would cause an
error. Notice that the Erlang philosophy is not to handle errors of this type in the function they occur, but to do so
elsewhere. More about this later.

In l'ist_max/2, you wak down the list and use Head instead of Result _so far when Head >
Resul t _so_far.when isaspecia word used before the -> in the function to say that you only use this part of
the function if the test that follows is true. A test of thistypeis caled guard. If the guard is false (that is, the guard
fails), the next part of the function istried. In this case, if Head is not greater than Resul t _so_f ar, then it must
be smaller or equal to it. This meansthat a guard on the next part of the function is not needed.

Some useful operatorsin guards are:

* <lessthan

e > greater than

e ==equd

e >=greater or equal
e =<lessorequa

e /=not equa

(see Guard Sequences).

To change the above program to one that works out the minimum value of the element in alist, you only need to write
<instead of >. (But it would be wise to change the name of the functiontol i st _ni n.)

Earlier it was mentioned that a variable can only be given a value once in its scope. In the above you see that
Resul t _so_far isgiven severa values. Thisis OK since every timeyou call | i st _max/ 2 you create a new
scope and one can regard Resul t _so_f ar asadifferent variable in each scope.

Another way of creating and giving a variable a value is by using the match operator = . So if you writeM = 5, a
variable called Mis created with the value 5. If, in the same scope, you then write M = 6, an error isreturned. Try
thisout in the shell:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 81

5.2 Sequential Programming

39> M = 5.
5
40> M = 6.

** exception error: no match of right hand side value 6
41> M =M + 1.

** exception error: no match of right hand side value 6
42> N =M + 1.

6

The use of the match operator is particularly useful for pulling apart Erlang terms and creating new ones.

43> {X, Y} = {paris, {f, 28}}.
{paris, {f,28}}

44> X,

paris

45> Y,

{f,28}

Here X getsthevaluepari s and Y{f, 28}.

If you try to do the same again with another city, an error is returned:

46> {X, Y} = {london, {f, 36}}.
** exception error: no match of right hand side value {london,{f,36}}

Variables can also be used to improve the readability of programs. For example, in function | i st _nax/ 2 above,
you can write:

list_max([Head|Rest], Result_so_far) when Head > Result_so far ->
New_result far = Head,
list_max(Rest, New_result far);

Thisispossibly alittle clearer.

5.2.11 More About Lists

Remember that the | operator can be used to get the head of alist:

47> [M1|T1] = [paris, london, rome].
[paris,london, rome]

48> M1.

paris

49> T1.

[london, rome]

The | operator can also be used to add ahead to alist:
50> L1 = [madrid | T1].
[madrid, london, rome]
51> L1.

[madrid, London, rome]

Now an example of thiswhen working with lists - reversing the order of alist:

82 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Sequential Programming

-module(tut8).
-export([reverse/1]).

reverse(List) ->
reverse(List, []).

reverse([Head | Rest], Reversed List) ->
reverse(Rest, [Head | Reversed List]);
reverse([], Reversed List) ->
Reversed List.

52> c(tut8).

{ok, tut8}

53> tut8:reverse([1,2,3]).
[3,2,1]

Consider how Rever sed_Li st is built. It starts as [], then successively the heads are taken off of the list to be
reversed and added to the the Rever sed_Li st , asshown in the following:

reverse([1]2,3], []) =>
reverse([2,3], [1]|[]11])

reverse([2|3], [1]) =>
reverse([3]1, [2]|[1])

reverse([3|[11, [2,1]) =>
reverse([], [3]|[2,1]1])

reverse([], [3,2,1]) =>
[3,2,1]

Themodulel i st s contains many functionsfor manipulating lists, for example, for reversing them. So before writing
a list-manipulating function it is a good idea to check if one not aready is written for you (see the lists(3) manual
pagein STDLIB).

Now let us get back to the cities and temperatures, but take a more structured approach thistime. First let us convert
thewholelist to Celsius as follows:

-module(tut?).
-export([format temps/1]).

format_temps(List of_cities) ->
convert_list to _c(List of cities).

convert list to c([{Name, {f, F}} | Rest]) ->
Converted City = {Name, {c, (F -32)* 5 / 9}},
[Converted City | convert list to c(Rest)];

convert list to c([City | Rest]) ->
[City | convert list to c(Rest)];

convert list to c([]) ->
[1.

Test the function:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 83

5.2 Sequential Programming

54> c(tut7).
{ok, tut7}.
55> tut7:format temps([{moscow, {c, -10}}, {cape town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
[{moscow, {c,-10}},

{cape town,{c,21.11111111111111}},

{stockholm, {c,-4}},

{paris, {c,-2.2222222222222223}},

{london, {c,2.2222222222222223}}]

Explanation:

format temps(List of cities) ->
convert list to c(List of cities).

Heref ormat _tenps/ 1 callsconvert list_to_c/1.convert _|ist_to_c/1 takes off the head of the
Li st _of _cities, converts it to Celsius if needed. The | operator is used to add the (maybe) converted to the
converted rest of thelist:

[Converted City | convert list to c(Rest)];
or:
[City | convert list to c(Rest)];
Thisisdone until the end of thelist isreached, that is, the list is empty:

convert list to c([]) ->
[1.

Now when the list is converted, afunction to print it is added:

-module(tut?).
-export([format temps/1]).

format temps(List of cities) ->
Converted List = convert list to c(List of cities),
print temp(Converted List).

convert list to c([{Name, {f, F}} | Rest]) ->
Converted City = {Name, {c, (F -32)* 5 / 9}},
[Converted City | convert list to c(Rest)];

convert list to c([City | Rest]) ->
[City | convert list to c(Rest)];

convert list to c([]) ->
[1.

print temp([{Name, {c, Temp}} | Restl]) ->
io:format("~-15w ~w c~n", [Name, Templ),
print temp(Rest);

print temp([]) ->
ok.

84 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Sequential Programming

56> c(tut7).

{ok, tut7}

57> tut7:format temps([{moscow, {c, -10}}, {cape town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).

moscow -10 ¢

cape_town 21.11111111111111 ¢
stockholm -4 ¢

paris -2.2222222222222223 ¢
london 2.2222222222222223 ¢
ok

Now afunction hasto be added to find the cities with the maxi mum and minimum temperatures. Thefollowing program
is not the most efficient way of doing this as you walk through thelist of citiesfour times. But it is better to first strive
for clarity and correctness and to make programs efficient only if needed.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 85

5.2 Sequential Programming

-module(tut?7).
-export([format temps/1]).

format temps(List of cities) ->
Converted List = convert list to c(List of cities),
print temp(Converted List),
{Max_city, Min city} = find max and min(Converted List),
print max _and min(Max city, Min city).

convert list to c([{Name, {f, Temp}} | Rest]) ->
Converted City = {Name, {c, (Temp -32)* 5 / 9}},
[Converted City | convert list to c(Rest)];

convert list to c([City | Rest]) ->
[City | convert list to c(Rest)];

convert list to c([]) ->
[1.

print temp([{Name, {c, Temp}} | Rest]) ->
io:format("~-15w ~w c~n", [Name, Temp]),
print temp(Rest);

print _temp([]) ->
ok.

find max_and min([City | Rest]) ->
find max_and min(Rest, City, City).

find max_and min([{Name, {c, Temp}} | Rest],
{Max_Name, {c, Max Temp}},
{Min Name, {c, Min Temp}}) ->

if
Temp > Max _Temp ->
Max _City = {Name, {c, Templ}}; % Change
true ->
Max City = {Max Name, {c, Max Temp}} % Unchanged
end,
if
Temp < Min Temp ->
Min City = {Name, {c, Templ}}; % Change
true ->
Min City = {Min Name, {c, Min Temp}} % Unchanged
end,

find max_and min(Rest, Max City, Min City);

find max_and min([], Max City, Min City) ->
{Max_City, Min City}.

print _max_and min({Max name, {c, Max temp}}, {Min_name, {c, Min temp}}) ->

io:format("Max temperature was ~w ¢ in ~w~n", [Max_temp, Max_name]),
io:format("Min temperature was ~w ¢ in ~w~n", [Min_temp, Min_name]).

86 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Sequential Programming

58> c(tut7).

{ok, tut7}

59> tut7:format temps([{moscow, {c, -10}}, {cape town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).

moscow -10 ¢

cape_town 21.11111111111111 ¢
stockholm -4 ¢

paris -2.2222222222222223 ¢
london 2.2222222222222223 ¢

Max temperature was 21.11111111111111 c in cape_town
Min temperature was -10 c in moscow
ok

5.2.12 If and Case

The function f i nd_max_and_ni n works out the maximum and minimum temperature. A new construct, i f , is
introduced here. If works as follows:
if
Condition 1 ->
Action 1;
Condition 2 ->
Action 2;
Condition 3 ->
Action 3;
Condition 4 ->
Action 4
end

Notice that there is no ";" before end. Conditions do the same as guards, that is, tests that succeed or fail. Erlang
starts at the top and tests until it finds a condition that succeeds. Then it evaluates (performs) the action following
the condition and ignores all other conditions and actions before the end. If no condition matches, arun-time failure
occurs. A condition that always succeeds isthe atomt r ue. Thisis often used last in ani f, meaning, do the action
following thet r ue if al other conditions have failed.

Thefollowing is a short program to show the workings of i f .

-module(tut9).
-export([test if/2]).

test if(A, B) ->

if
A == ->
io:format("A == 5~n", []),
a_equals 5;
B == ->
io:format("B == 6~n", []),
b equals 6;
A==2,B==3-> %That is A equals 2 and B equals 3
io:format("A == 2, B == 3~n", [1]),
a_equals 2 b equals 3;
A == ; B=7 -> %That is A equals 1 or B equals 7
io:format("A == 1 ; B == 7~n", [1),
a equals 1 or b equals 7
end.

Testing this program gives:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 87

5.2 Sequential Programming

60> c(tut9).

{ok, tut9}

61> tut9:test if(5,33).

A==

a_equals 5

62> tut9:test if(33,6).

B==

b equals 6

63> tut9:test if(2, 3).

A==2,B==

a_equals 2 b equals 3

64> tut9:test if(1, 33).

A::]_;B==7

a_equals 1 or b equals 7

65> tut9:test if(33, 7).

A::]_;B==7

a_equals 1 or b equals 7

66> tut9:test if(33, 33).

** exception error: no true branch found when evaluating an if expression
in function tut9:test if/2 (tut9.erl, line 5)

Notice that t ut 9: test _i f (33, 33) does not cause any condition to succeed. This leads to the run time error
i f_cl ause, here nicely formatted by the shell. See Guard Sequences for details of the many guard tests available.

case isanother construct in Erlang. Recall that the convert _| engt h function was written as:

convert length({centimeter, X}) ->
{inch, X / 2.54};

convert length({inch, Y}) ->
{centimeter, Y * 2.54}.

The same program can also be written as:

-module(tutlo).
-export([convert length/1]).

convert length(Length) ->
case Length of
{centimeter, X} ->
{inch, X / 2.54};
{inch, Y} ->
{centimeter, Y * 2.54}
end.

67> c(tutlo).

{ok, tutle}

68> tutl0:convert_length({inch, 6}).
{centimeter,15.24}

69> tutl0:convert length({centimeter, 2.5}).
{inch,0.984251968503937}

Both case and i f have return values, that is, in the above example case returned either {i nch, X/ 2. 54} or
{centineter, Y*2. 54} . The behaviour of case can aso be modified by using guards. The following example
clarifies this. It tells us the length of a month, given the year. The year must be known, since February has 29 days

inalesp year.

88 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Sequential Programming

-module(tutll).
-export([month length/2]).

month length(Year, Month) ->

o® o of

Leap = if

trunc(Year / 400)

trunc(Year / 100)
not leap;
trunc(Year / 4) *

leap;

% ALl years divisible by 400 are leap
% Years divisible by
% Years divisible by

100 are not leap (except the 400 rule above)
4 are leap (except the 100 rule above)

* 400 == Year ->
* 100 == Year ->

4 == Year ->

when Leap == leap -> 29;

leap;
true ->
not leap
end,
case Month of
sep -> 30;
apr -> 30;
jun -> 30;
nov -> 30;
feb
feb -> 28;
jan -> 31;
mar -> 31;
may -> 31;
jul -> 31;
aug -> 31;
oct -> 31;
dec -> 31
end.

70> c(tutll).

{ok, tutll}

71> tutll:month length(2004, feb).

29

72> tutll:month length(2003, feb).

28

73> tutll:month length (1947, aug).

31

5.2.13 Built-In Functions (BIFs)

BlFs are functionsthat for some reason are built-in to the Erlang virtual machine. BIFs often implement functionality
that isimpossible or istoo inefficient to implement in Erlang. Some BIFs can be called using the function name only
but they are by default belonging to theer | ang module. For example, thecall tothe BIFt r unc below isequivalent

toacdltoerl ang: trunc.

As shown, first it is checked if ayear isleap. If ayear is divisible by 400, it is aleap year. To determine this, first
divide the year by 400 and use the BIF t r unc (more about this later) to cut off any decimals. Then multiply by 400
again and see if the same value isreturned again. For example, year 2004

2004 / 400 = 5.01

trunc(5.01)

=5

5 * 400 = 2000

2000 is not the same as 2004, so 2004 is not divisible by 400. Y ear 2000:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 89

5.2 Sequential Programming

2000 / 400 = 5.0
trunc(5.0) =
5 * 400 = 2000

|
(6]

That is, aleap year. The next two t r unc-tests evaluate if the year is divisible by 100 or 4 in the sasme way. The first
i f returns| eap or not _| eap, which lands up in the variable Leap. Thisvariable is used in the guard for f eb in
the following case that tells us how long the month is.

This example showed the use of t r unc. It is easier to use the Erlang operator r emthat gives the remainder after
division, for example:

74> 2004 rem 400.
4

So instead of writing:

trunc(Year / 400) * 400 == Year ->
leap;

it can be written:

Year rem 400 == ->
leap;

There are many other BIFssuch ast r unc. Only afew BIFs can be used in guards, and you cannot use functions you
have defined yourself in guards. (see Guard Sequences) (For advanced readers: This is to ensure that guards do not
have side effects.) Let us play with afew of these functionsin the shell:

75> trunc(5.6).

5

76> round(5.6).

6

77> length([a,b,c,d]).

4

78> float(5).

5.0

79> is atom(hello).

true

80> is atom("hello").

false

81> is tuple({paris, {c, 30}}).
true

82> is tuple([paris, {c, 30}]1).
false

All of these can be used in guards. Now for some BIFs that cannot be used in guards:

83> atom to list(hello).
"hello"

84> list to atom('"goodbye").
goodbye

85> integer to list(22).
woon

These three BIFs do conversions that would be difficult (or impossible) to do in Erlang.

90 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.2 Sequential Programming

5.2.14 Higher-Order Functions (Funs)

Erlang, like most modern functional programming languages, has higher-order functions. Here is an example using
the shell:

86> Xf = fun(X) -> X * 2 end.
#Fun<erl eval.5.123085357>
87> Xf(5).

10

Here is defined a function that doubles the value of a number and assigned this function to a variable. Thus Xf (5)
returns value 10. Two useful functions when working with listsaref or each and map, which are defined asfollows:

foreach(Fun, [First|Rest]) ->
Fun(First),
foreach(Fun, Rest);
foreach(Fun, []) ->
ok.

map(Fun, [First|Rest]) ->
[Fun(First) |map(Fun,Rest)];
map(Fun, [1) ->
[1.

These two functions are provided in the standard module | i st s. f or each takes alist and applies a fun to every
element in the list. map creates a new list by applying afun to every element in alist. Going back to the shell, map
isused and afun to add 3 to every element of alist:

88> Add_3 = fun(X) -> X + 3 end.
#Fun<erl eval.5.123085357>

89> lists:map(Add 3, [1,2,3]).
[4,5,6]

Let us (again) print the temperaturesin alist of cities:

90> Print City = fun({City, {X, Temp}}) -> io:format("~-15w ~w ~w~n",
[City, X, Temp]) end.

#Fun<erl eval.5.123085357>

91> lists:foreach(Print City, [{moscow, {c, -10}}, {cape town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).

moscow c -10
cape_town f 70

stockholm c -4

paris f 28

london f 36

ok

L et usnow defineafun that can be used to go through alist of citiesand temperatures and transform them all to Celsius.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 91

5.2 Sequential Programming

-module(tutl3).
-export([convert list to c/1]).

convert_to c({Name, {f, Temp}}) ->

{Name, {c, trunc((Temp - 32) * 5 / 9)}};
convert_to c({Name, {c, Temp}}) ->

{Name, {c, Temp}}.

convert list to c(List) ->
lists:map(fun convert to c/1, List).

92> tutl3:convert list to c([{moscow, {c, -10}}, {cape town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}1).

[{moscow, {c,-10}},

{cape _town,{c,21}},

{stockholm, {c, -4}},

{paris,{c,-2}},

{london, {c,2}}1]

Theconvert _to_c functionisthe same as before, but here it is used as afun:

lists:map(fun convert to c/1, List)

When a function defined elsewhere is used as a fun, it can be referred to as Functi on/ Ari ty (remember that
Arity = number of arguments). So in the map-call | i sts: map(fun convert_to_c/1, List) iswritten.
Asshown, convert |i st _to_c becomesmuch shorter and easier to understand.

The standard modulel i st s aso containsafunctionsort (Fun, Li st) whereFun isafun with two arguments.
Thisfun returnst r ue if the first argument is less than the second argument, or else f al se. Sorting is added to the

convert list _to_c:

-module(tutl3).
-export([convert list to c/1]).

convert to c({Name, {f, Temp}}) ->

{Name, {c, trunc((Temp - 32) * 5 / 9)}};
convert to c({Name, {c, Temp}}) ->

{Name, {c, Temp}}.

convert_list to_c(List) ->
New list = lists:map(fun convert_to c/1, List),
lists:sort(fun({ , {c, Templ}}, { , {c, Temp2}}) ->
Templ < Temp2 end, New list).

93> c(tutl3).
{ok,tutl3}
94> tutl3:convert list to c([{moscow, {c, -10}}, {cape town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
[{moscow, {c,-10}},
{stockholm, {c, -4}},
{paris,{c, -2}},
{london, {c,2}},
{cape_town,{c,21}}]

Insort thefunisused:

fun({ , {c, Templ}}, { , {c, Temp2}}) -> Templ < Temp2 end,

92 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.3 Concurrent Programming

Here the concept of an anonymous variable " " isintroduced. This is simply shorthand for a variable that gets a

value, but the valueisignored. This can be used anywhere suitable, not just in funs. Tenpl < Tenp2 returnst r ue
if Tenpl islessthan Tenp2.

5.3 Concurrent Programming

5.3.1 Processes

One of themain reasonsfor using Erlang instead of other functional languagesis Erlang's ability to handle concurrency
and distributed programming. By concurrency is meant programs that can handle several threads of execution at the
same time. For example, modern operating systems allow you to use a word processor, a spreadsheet, a mail client,
and aprint job all running at the same time. Each processor (CPU) in the system is probably only handling one thread
(or job) at atime, but it swaps between the jobs at such arate that it gives theillusion of running them all at the same
time. It iseasy to create parallel threads of execution in an Erlang program and to allow these threads to communicate
with each other. In Erlang, each thread of execution is called a process.

(Aside: the term "process’ is usually used when the threads of execution share no data with each other and the term
"thread" when they share datain some way. Threads of execution in Erlang share no data, that is why they are called
processes).

The Erlang BIF spawn is used to create a new process: spawn(Modul e, Exported_Function, List of
Ar gunent s) . Consider the following module:

-module(tutld).
-export([start/0, say something/2]).

say something(What, 0) ->
done;

say something(What, Times) ->
io:format("~p~n", [Whatl]),
say _something(What, Times - 1).

start() ->
spawn(tutl4, say something, [hello, 31),
spawn(tutl4, say something, [goodbye, 3]).

5> c(tutl4d).

{ok,tutl4}

6> tutl4:say something(hello, 3).
hello

hello

hello

done

Asshown, thefunctionsay_sonet hi ng writesitsfirst argument the number of times specified by second argument.
The function st ar t starts two Erlang processes, one that writes "hello" three times and one that writes "goodbye"
three times. Both processes use the function say_sonet hi ng. Notice that a function used in thisway by spawn,
to start a process, must be exported from the module (that is, in the - expor t at the start of the module).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 93

5.3 Concurrent Programming

9> tutl4d:start().
hello

goodbye

<0.63.0>

hello

goodbye

hello

goodbye

Noticethat it did not write"hello" threetimes and then "goodbye" threetimes. Instead, thefirst processwrotea"hello",
the second a "goodbye", the first another "hello" and so forth. But where did the <0.63.0> come from? The return
value of afunction isthe return value of the last "thing" in the function. The last thing inthe functionst art is

spawn(tutl4, say something, [goodbye, 31).

spawn returnsaprocessidentifier, or pid, which uniquely identifiesthe process. So <0.63.0> isthe pid of thes pawn
function call above. The next example shows how to use pids.

Notice also that ~p is used instead of ~w ini o: f or mat . To quote the manual: "~p Writes the data with standard
syntax in the same way as ~w, but breaks terms whose printed representation is longer than one line into many lines
and indents each line sensibly. It also tries to detect lists of printable characters and to output these as strings”.

5.3.2 Message Passing

In the following example two processes are created and they send messages to each other a number of times.
-module(tutl5).
-export([start/0, ping/2, pong/0]).

ping(0, Pong PID) ->
Pong PID ! finished,
io:format("ping finished~n", [1);

ping(N, Pong PID) ->
Pong PID ! {ping, self()},
receive
pong ->
io:format("Ping received pong~n", [])
end,
ping(N - 1, Pong PID).

pong() ->
receive
finished ->
io:format("Pong finished~n", [1);
{ping, Ping PID} ->
io:format("Pong received ping~n", [1),
Ping PID ! pong,
pong ()
end.

start() ->

Pong PID = spawn(tutl5, pong, []),
spawn(tutl5, ping, [3, Pong PID]).

94 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.3 Concurrent Programming

1> c(tutls).
{ok,tutl5}

2> tutl5: start().
<0.36.0>

Pong received ping
Ping received pong
Pong received ping
Ping received pong
Pong received ping
Ping received pong
ping finished

Pong finished

Thefunction st art first creates aprocess, let us call it "pong":

Pong PID = spawn(tutl5, pong, [])

This process executes t ut 15: pong() . Pong_PI D is the process identity of the "pong" process. The function
st art now creates another process "ping":

spawn(tutl5, ping, [3, Pong PID]),
This process executes:
tutl5:ping (3, Pong PID)

<0.36.0> isthereturn value from the st ar t function.

The process "pong" now does:

receive
finished ->
io:format("Pong finished~n", [1);
{ping, Ping PID} ->
io:format("Pong received ping~n", [1),
Ping PID ! pong,
pong ()
end.

Ther ecei ve construct is used to allow processes to wait for messages from other processes. It has the following
format:

receive
patternl ->
actionsl;
pattern2 ->
actions2;

patternN
actionsN
end.

Noticethereisno";" beforetheend.

M essages between Erlang processes are simply valid Erlang terms. That is, they can be lists, tuples, integers, atoms,
pids, and so on.

Each process has its own input queue for messages it receives. New messages received are put at the end of the
gueue. When a process executes ar ecei ve, the first message in the queue is matched against the first pattern in
ther ecei ve. If this matches, the message is removed from the queue and the actions corresponding to the pattern
are executed.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 95

5.3 Concurrent Programming

However, if the first pattern does not match, the second pattern istested. If this matches, the messageisremoved from
the queue and the actions corresponding to the second pattern are executed. If the second pattern does not match, the
third is tried and so on until there are no more patterns to test. If there are no more patterns to test, the first message
is kept in the queue and the second message is tried instead. If this matches any pattern, the appropriate actions are
executed and the second message is removed from the queue (keeping the first message and any other messages in
the queue). If the second message does not match, the third message is tried, and so on, until the end of the queue
is reached. If the end of the queue is reached, the process blocks (stops execution) and waits until a new message is
received and this procedure is repeated.

The Erlang implementation is "clever" and minimizes the number of times each message is tested against the patterns
ineachr ecei ve.

Now back to the ping pong example.

"Pong" iswaiting for messages. If theatom f i ni shed isreceived, "pong" writes"Pong finished" to the output and,
asit has nothing more to do, terminates. If it receives a message with the format:

{ping, Ping PID}

it writes "Pong received ping" to the output and sends the atom pong to the process "ping":
Ping PID ! pong

Notice how the operator "!" is used to send messages. The syntax of "!" is:
Pid ! Message

That is, Message (any Erlang term) is sent to the process with identity Pi d.

After sending the message pong to the process "ping", "pong" calls the pong function again, which causesit to get
back to ther ecei ve again and wait for another message.

Now let uslook at the process "ping". Recall that it was started by executing:
tutl5:ping (3, Pong PID)

Looking at the function pi ng/ 2, the second clause of pi ng/ 2 is executed since the value of the first argument is 3
(not 0) (first clause head is pi ng(0, Pong_PI D), second clause head is pi ng(N, Pong_PI D), so N becomes 3).

The second clause sends a message to "pong":
Pong PID ! {ping, self()},

sel f () returns the pid of the process that executes sel f (), in this case the pid of "ping". (Recall the code for
"pong", thislands up in the variable Pi ng_PI Dinther ecei ve previously explained.)

"Ping" now waits for areply from "pong":
receive
pong ->
io:format("Ping received pong~n", [1])
end,
It writes "Ping received pong" when this reply arrives, after which "ping" callsthe pi ng function again.
ping(N - 1, Pong PID)

N- 1 causes the first argument to be decremented until it becomes 0. When this occurs, the first clause of pi ng/ 2
is executed:

96 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.3 Concurrent Programming

ping(6, Pong_ PID) ->
Pong PID ! finished,
io:format("ping finished~n", []);

Theatomfi ni shed issent to "pong" (causing it to terminate as described above) and "ping finished" is written to

the output. "Ping" then terminates as it has nothing left to do.

5.3.3 Registered Process Names

In the above example, "pong" wasfirst created to be able to give the identity of "pong" when "ping" was started. That
is, in some way "ping" must be able to know the identity of "pong" to be able to send a message to it. Sometimes
processes which need to know each other's identities are started independently of each other. Erlang thus provides a
mechanism for processes to be given names so that these names can be used as identitiesinstead of pids. Thisisdone

by using ther egi st er BIF:

register(some atom, Pid)

Let us now rewrite the ping pong example using this and give the name pong to the "pong" process:

-module(tutl6).
-export([start/0, ping/1l, pong/0]).

ping(0) ->
pong ! finished,
io:format("ping finished~n", [1]);

ping(N) ->
pong ! {ping, self()},
receive
pong ->
io:format("Ping received pong~n", [])
end,
ping(N - 1).

pong() ->
receive
finished ->
io:format("Pong finished~n", []);
{ping, Ping PID} ->
io:format("Pong received ping~n", [1),
Ping PID ! pong,
pong()
end.

start() ->
register(pong, spawn(tutl6, pong, [1)),
spawn(tutl6, ping, [3]1).

2> c(tutle).

{ok, tutl6}

3> tutl6:start().
<0.38.0>

Pong received ping
Ping received pong
Pong received ping
Ping received pong
Pong received ping
Ping received pong
ping finished

Pong finished

Ericsson AB. All Rights Reserved

.: Erlang/OTP System Documentation | 97

5.3 Concurrent Programming

Herethest ar t / O function,
register(pong, spawn(tutl6, pong, [1)),

both spawns the "pong" process and givesit the name pong. In the "ping" process, messages can be sent to pong by:

pong ! {ping, self()},
pi ng/ 2 now becomes pi ng/ 1 astheargument Pong_PI Dis not needed.

5.3.4 Distributed Programming

L et us rewrite the ping pong program with "ping" and "pong" on different computers. First afew things are needed to
set up to get thisto work. The distributed Erlang implementation provides a very basic authentication mechanism to
prevent unintentional access to an Erlang system on another computer. Erlang systems which talk to each other must
have the same magic cookie. The easiest way to achieve thisis by having afile called . er| ang. cooki e in your
home directory on all machines on which you are going to run Erlang systems communicating with each other:

* On Windows systems the home directory is the directory pointed out by the environment variable SHOME -
you may need to set this.

e OnLinux or UNIX you can safely ignore thisand smply create afilecalled . er | ang. cooki e inthe
directory you get to after executing the command cd without any argument.

The. er | ang. cooki e fileisto contain alinewith the same atom. For example, on Linux or UNIX, inthe OS shell:

$ cd

$ cat > .erlang.cookie
this is very secret

$ chmod 400 .erlang.cookie

Thechnod above makesthe. er | ang. cooki e file accessible only by the owner of thefile. Thisisarequirement.
When you start an Erlang system that is going to talk to other Erlang systems, you must give it aname, for example:

$ erl -sname my name

We will see more details of this later. If you want to experiment with distributed Erlang, but you only have one
computer to work on, you can start two separate Erlang systems on the same computer but give them different names.
Each Erlang system running on a computer is called an Erlang node.

(Note: er | - sname assumes that all nodes are in the same IP domain and we can use only the first component of
the IP address, if we want to use nodes in different domains we use - nane instead, but then all 1P address must be
giveninfull)

Here is the ping pong example modified to run on two separate nodes:

98 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.3 Concurrent Programming

-module(tutl?).
-export([start ping/1l, start pong/0, ping/2, pong/0]).

ping(0, Pong Node) ->
{pong, Pong Node} ! finished,
io:format("ping finished~n", []);

ping(N, Pong Node) ->
{pong, Pong Node} ! {ping, self()},
receive
pong ->
io:format("Ping received pong~n", [])
end,
ping(N - 1, Pong Node).

pong() ->
receive
finished ->
io:format("Pong finished~n", [1);
{ping, Ping PID} ->
io:format("Pong received ping~n", [1),
Ping PID ! pong,
pong ()
end.

start pong() ->
register(pong, spawn(tutl7, pong, [1)).

start ping(Pong Node) ->
spawn(tutl7, ping, [3, Pong Node]).

Let us assume there are two computers called gollum and kosken. First a node is started on kosken, called ping, and
then a node on gollum, called pong.

On kosken (on a Linux/UNIX system):
kosken> erl -sname ping
Erlang (BEAM) emulator version 5.2.3.7 [hipe] [threads:0]

Eshell V5.2.3.7 (abort with ~G)
(ping@kosken)1>

On gollum:
gollum> erl -sname pong
Erlang (BEAM) emulator version 5.2.3.7 [hipe] [threads:0]

Eshell V5.2.3.7 (abort with "G)
(pong@gollum)1>

Now the "pong" process on gollum is started:
(pong@gollum)1> tutl7:start pong().
true

And the "ping" process on kosken is started (from the code above you can see that a parameter of thest art _pi ng
function is the node name of the Erlang system where "pong" is running):

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 99

5.3 Concurrent Programming

(ping@kosken)1> tutl7:start ping(pong@gollum).
<0.37.0>

Ping received pong

Ping received pong

Ping received pong

ping finished

As shown, the ping pong program has run. On the "pong" side:

(pong@gollum)2>
Pong received ping
Pong received ping
Pong received ping
Pong finished
(pong@gollum)2>

Looking at thet ut 17 code, you see that the pong function itself is unchanged, the following lineswork in the same
way irrespective of on which node the "ping" processis executes:

{ping, Ping PID} ->
io:format("Pong received ping~n", [1),
Ping PID ! pong,

Thus, Erlang pids contain information about where the process executes. So if you know the pid of a process, the "!"
operator can be used to send it a message disregarding if the processis on the same node or on a different node.

A difference is how messages are sent to a registered process on another node:

{pong, Pong Node} ! {ping, self()},

Atuple{regi st ered_name, node_nane} isusedinstead of just ther egi st er ed_nane.

In the previous example, "ping" and "pong" were started from the shells of two separate Erlang nodes. spawn can
also be used to start processes in other nodes.

The next example is the ping pong program, yet again, but thistime "ping" is started in another node:

100 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.3 Concurrent Programming

-module(tutl8).
-export([start/1, ping/2, pong/0]).

ping(0, Pong Node) ->
{pong, Pong Node} ! finished,
io:format("ping finished~n", []);

ping(N, Pong Node) ->
{pong, Pong Node} ! {ping, self()},
receive
pong ->
io:format("Ping received pong~n", [])
end,
ping(N - 1, Pong Node).

pong() ->
receive
finished ->
io:format("Pong finished~n", [1);
{ping, Ping PID} ->
io:format("Pong received ping~n", [1),
Ping PID ! pong,
pong ()
end.

start(Ping Node) ->
register(pong, spawn(tutl8, pong, [1)),
spawn(Ping Node, tutl8, ping, [3, node()]).

Assuming an Erlang system called ping (but not the "ping" process) has already been started on kosken, then on gollum
thisis done:

(pong@gollum)1> tutl8:start(ping@kosken).
<3934.39.0>

Pong received ping

Ping received pong

Pong received ping

Ping received pong

Pong received ping

Ping received pong

Pong finished

ping finished

Noticethat al the output is received on gollum. Thisis because the I/O system finds out where the processis spawned
from and sends all output there.

5.3.5 A Larger Example

Now for a larger example with a simple "messenger”. The messenger is a program that allows users to log in on
different nodes and send simple messages to each other.

Before starting, notice the following:
» Thisexample only shows the message passing logic - no attempt has been made to provide a nice graphical user
interface, although this can also be donein Erlang.

e Thissort of problem can be solved easier by use of thefacilitiesin OTP, which also provide methods for updating
code on the fly and so on (see OTP Design Principles).

« Thefirst program contains some inadequacies regarding handling of nodes which disappear. These are corrected
in alater version of the program.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 101

5.3 Concurrent Programming

The messenger is set up by allowing "clients' to connect to a central server and say who and where they are. That is,
auser does not need to know the name of the Erlang node where another user islocated to send a message.

Filemessenger . erl :

102 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.3 Concurrent Programming

%% Message passing utility.

%% User interface:

%% Logon (Name)

6% One user at a time can log in from each Erlang node in the

6% system messenger: and choose a suitable Name. If the Name

6% is already logged in at another node or if someone else is

6% already logged in at the same node, login will be rejected

%% with a suitable error message.

%% Logoff()

%% Logs off anybody at that node

%% message(ToName, Message)

6% sends Message to ToName. Error messages if the user of this

6% function is not logged on or if ToName is not logged on at

%% any node.

%% One node in the network of Erlang nodes runs a server which maintains
%% data about the logged on users. The server is registered as "messenger'
%% Each node where there is a user logged on runs a client process registered
%% as "mess client"

%% Protocol between the client processes and the server

To server: {ClientPid, logon, UserName}
Reply {messenger, stop, user exists at other node} stops the client
Reply {messenger, logged on} logon was successful

To server: {ClientPid, logoff}
Reply: {messenger, logged off}

% To server: {ClientPid, logoff}
%% Reply: no reply

% To server: {ClientPid, message to, ToName, Message} send a message
% Reply: {messenger, stop, you are not logged on} stops the client

Reply: {messenger, receiver not found} no user with this name logged on
Reply: {messenger, sent} Message has been sent (but no guarantee)

To client: {message from, Name, Message},

Protocol between the "commands" and the client

% Started: messenger:client(Server Node, Name)
% To client: logoff
%% To client: {message to, ToName, Message}

Configuration: change the server node() function to return the
name of the node where the messenger server runs

-module(messenger) .
-export([start server/0, server/1l, logon/1l, logoff/0, message/2, client/2]).

Change the function below to return the name of the node where the
messenger server runs

server_node() ->

messenger@super.

@ of

00
676
00

676

%% This is the server process for the "messenger"
%% the user list has the format [{ClientPidl, Namel}, {ClientPid22, Name2},...]
server(User List) ->
receive
{From, logon, Name} ->
New User List = server logon(From, Name, User List),
server(New User List);

@ of

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 103

5.3 Concurrent Programming

{From, logoff} ->
New User List = server logoff(From, User List),
server(New User List);

{From, message to, To, Message} ->
server_transfer(From, To, Message, User List),
io:format("list is now: ~p~n", [User List]),
server(User List)

end.

%%% Start the server
start _server() ->
register(messenger, spawn(messenger, server, [[]1])).

%%% Server adds a new user to the user list
server_logon(From, Name, User List) ->

%% check if logged on anywhere else

case lists:keymember(Name, 2, User List) of

true ->
From ! {messenger, stop, user exists at other node}, %reject logon
User List;
false ->
From ! {messenger, logged on},
[{From, Name} | User List] %add user to the list

end.

%%% Server deletes a user from the user list
server_logoff(From, User List) ->
lists:keydelete(From, 1, User List).

%%% Server transfers a message between user
server_transfer(From, To, Message, User List) ->
%% check that the user is logged on and who he is
case lists:keysearch(From, 1, User List) of
false ->
From ! {messenger, stop, you are not logged on};
{value, {From, Name}} ->
server_transfer(From, Name, To, Message, User List)
end.
%%% If the user exists, send the message
server_transfer(From, Name, To, Message, User List) ->
%% Find the receiver and send the message
case lists:keysearch(To, 2, User List) of
false ->
From ! {messenger, receiver not found};
{value, {ToPid, To}} ->
ToPid ! {message from, Name, Message},
From ! {messenger, sent}
end.

%%% User Commands
logon(Name) ->
case whereis(mess client) of
undefined ->
register(mess client,
spawn(messenger, client, [server node(), Name]));
_ -> already logged on
end.

logoff() ->
mess_client ! logoff.

message(ToName, Message) ->

104 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.3 Concurrent Programming

case whereis(mess client) of % Test if the client is running
undefined ->
not logged on;
_ -> mess_client ! {message to, ToName, Message},
ok
end.

%%% The client process which runs on each server node
client(Server Node, Name) ->
{messenger, Server Node} ! {self(), logon, Name},
await result(),
client(Server Node).

client(Server Node) ->
receive
logoff ->
{messenger, Server Node} ! {self(), logoff},
exit(normal);
{message to, ToName, Message} ->
{messenger, Server Node} ! {self(), message to, ToName, Message},
await result();
{message from, FromName, Message} ->
io:format("Message from ~p: ~p~n", [FromName, Message])
end,
client(Server Node).

%%% wait for a response from the server
await result() ->
receive
{messenger, stop, Why} -> % Stop the client
io:format("~p~n", [Whyl),
exit(normal);
{messenger, What} -> 9% Normal response
io:format("~p~n", [What])
end.

To use this program, you need to:

* Configuretheser ver _node() function.
e Copy the compiled code (messenger . beam to the directory on each computer where you start Erlang.

In the following example using this program, nodes are started on four different computers. If you do not have that
many machines available on your network, you can start several hodes on the same machine.

Four Erlang nodes are started up: messenger@super, c1@bilbo, c2@kosken, c3@gollum.
First the server at messenger@super is started up:

(messenger@super)1l> messenger:start server().
true
Now Peter logs on at c1@bilbo:
(cl@bilbo)1> messenger:logon(peter).
true
logged on
James logs on at c2@kosken:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 105

5.3 Concurrent Programming

(c2@kosken) 1> messenger:logon(james).
true
logged on

And Fred logs on at c3@gollum;

(c3@gollum) 1> messenger:logon(fred).
true
logged on

Now Peter sends Fred a message:

(cl@bilbo)2> messenger:message(fred, "hello").
ok
sent

Fred receives the message and sends a message to Peter and logs off:

Message from peter: "hello"

(c3@gollum)2> messenger:message(peter, "go away, I'm busy").
ok

sent

(c3@gollum)3> messenger:logoff().

logoff

James now tries to send a message to Fred:

(c2@kosken)2> messenger:message(fred, "peter doesn't like you").
ok
receiver not found

But thisfails as Fred has already logged off.
First let uslook at some of the new concepts that have been introduced.

There are two versions of the ser ver _t ransf er function: one with four arguments (ser ver _transfer/ 4)
and one with five (ser ver _transf er/ 5). These are regarded by Erlang as two separate functions.

Notice how to write the ser ver function so that it calls itself, through ser ver (User _Li st), and thus creates
aloop. The Erlang compiler is "clever" and optimizes the code so that this really is a sort of loop and not a proper
function call. But this only works if there is no code after the call. Otherwise, the compiler expects the call to return
and make a proper function call. This would result in the process getting bigger and bigger for every loop.

Functionsinthel i st s moduleare used. Thisisavery useful module and astudy of the manual page isrecommended
(erl -man lists).lists: keymenber (Key, Position, Li sts) looksthrough alist of tuples and looks
at Posi ti onineachtupleto seeif itisthe same asKey. Thefirst element is position 1. If it finds a tuple where the
element at Posi ti on isthesameasKey, it returnst r ue, otherwisef al se.

3> lists:keymember(a, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
true
4> lists:keymember(p, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
false

lists: keydel et e worksin the same way but deletes the first tuple found (if any) and returns the remaining list:

106 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.3 Concurrent Programming

5> lists:keydelete(a, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
[{x,y,z},{b,b,b},{q,r,s}]

|ists: keysearchislikel i sts: keynenber, butitreturns{val ue, Tupl e_Found} ortheatomf al se.
There are many very useful functionsinthel i st s module.

An Erlang process (conceptually) runs until it doesar ecei ve and there is no message which it wants to receivein
the message queue. "conceptually" is used here because the Erlang system shares the CPU time between the active
processes in the system.

A process terminates when there is nothing more for it to do, that is, the last function it calls simply returns and does
not call another function. Another way for a process to terminateisfor it to call exi t/ 1. Theargumenttoexi t/ 1
has a special meaning, which is discussed later. In thisexample, exi t (nor mal) isdone, which has the same effect
as aprocess running out of functionsto call.

The BIF wher ei s(Regi st er edNane) checks if a registered process of name Regi st er edNane exists. If it
exigts, the pid of that processis returned. If it does not exist, the atom undef i ned isreturned.

Y ou should by now be able to understand most of the code in the messenger-module. Let us study one case in detail:
amessage is sent from one user to another.

Thefirst user "sends" the message in the example above by:
messenger:message(fred, "hello")
After testing that the client process exists:
whereis(mess client)
And amessageissenttonmess_cl i ent:
mess client ! {message to, fred, "hello"}
The client sends the message to the server by:
{messenger, messenger@super} ! {self(), message to, fred, "hello"},

And waits for areply from the server.
The server receives this message and calls:

server _transfer(From, fred, "hello", User List),

This checksthat the pid Fr omisintheUser _Li st :
lists:keysearch(From, 1, User List)

If keysear ch returnsthe atom f al se, some error has occurred and the server sends back the message:
From ! {messenger, stop, you are not logged on}

Thisisreceived by the client, whichinturn doesexi t (nor mal) andterminates. If keysear ch returns{ val ue,
{From Nane}} itiscertain that the user islogged on and that his name (peter) isin variable Nane.

Let usnow call:
server_transfer(From, peter, fred, "hello", User List)

Notice that asthisisser ver _t ransf er/ 5, itisnot the same as the previous function ser ver _t ransf er/ 4.
Another keysear ch isdoneon User _Li st tofind the pid of the client corresponding to fred:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 107

5.4 Robustness

lists:keysearch(fred, 2, User List)

This time argument 2 is used, which is the second element in the tuple. If this returns the atom f al se, fred is not
logged on and the following message is sent:

From ! {messenger, receiver not found};
Thisisreceived by the client.
If keysear ch returns:
{value, {ToPid, fred}}
The following message is sent to fred's client:
ToPid ! {message from, peter, "hello"},
The following message is sent to peter's client:
From ! {messenger, sent}
Fred's client receives the message and printsit:

{message from, peter, "hello"} ->
io:format("Message from ~p: ~p~n", [peter, "hello"])

Peter's client receives the messageintheawai t _r esul t function.

5.4 Robustness

Several things are wrong with the messenger example in A Larger Example. For example, if a node where a user is
logged on goes down without doing alogoff, the user remainsin the server'sUser _Li st , but the client disappears.
This makesit impossible for the user to log on again as the server thinks the user already islogged on.

Or what happensif the server goesdown in the middle of sending amessage, leaving the sending client hanging forever
intheawai t _resul t function?

5.4.1 Time-outs

Before improving the messenger program, let us look at some general principles, using the ping pong program as an
example. Recall that when "ping" finishes, it tells "pong" that it has done so by sending the atom f i ni shed asa
message to "pong" so that "pong” can aso finish. Another way to let "pong"” finish isto make "pong" exit if it does
not receive a message from ping within a certain time. This can be done by adding atime-out to pong as shown in
the following example:

108 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.4 Robustness

-module(tutl9).
-export([start ping/1l, start pong/0, ping/2, pong/0]).

ping(0, Pong Node) ->
io:format("ping finished~n", []);

ping(N, Pong Node) ->
{pong, Pong Node} ! {ping, self()},
receive
pong ->
io:format("Ping received pong~n", [])
end,
ping(N - 1, Pong Node).

pong() ->
receive
{ping, Ping PID} ->

io:format("Pong received ping~n", [1),
Ping PID ! pong,
pong ()

after 5000 ->
io:format("Pong timed out~n", [])

end.

start pong() ->
register(pong, spawn(tutl9, pong, [1)).

start ping(Pong Node) ->
spawn(tutl9, ping, [3, Pong Node]).

After this is compiled and the file t ut 19. beamis copied to the
(pong@kosken):

(pong@kosken)1> tutl9:start pong().
true

Pong received ping

Pong received ping

Pong received ping

Pong timed out

And the following is seen on (ping@gollum):

(ping@gollum)1> tutl9:start ping(pong@kosken).
<0.36.0>

Ping received pong

Ping received pong

Ping received pong

ping finished

Thetime-out is set in:

pong() =2
receive
{ping, Ping PID} ->

io:format("Pong received ping~n", [1),
Ping PID ! pong,
pong()

after 5000 ->
io:format("Pong timed out~n", [1])

end.

Ericsson AB. All Rights Reserved

necessary directories, the following is seen on

.: Erlang/OTP System Documentation | 109

5.4 Robustness

Thetime-out (af t er 5000) isstarted whenr ecei ve isentered. Thetime-outiscanceled if { pi ng, Pi ng_PI D}
is received. If {pi ng, Pi ng_PI D} is not received, the actions following the time-out are done after 5000
milliseconds. af t er must belastinther ecei ve, that is, preceded by all other message reception specificationsin
ther ecei ve. Itisalso possible to call afunction that returned an integer for the time-out:

after pong timeout() ->

In general, there are better ways than using time-outs to supervise parts of adistributed Erlang system. Time-outs are
usually appropriate to supervise external events, for example, if you have expected a message from some external
system within a specified time. For example, atime-out can be used to log a user out of the messenger system if they
have not accessed it for, say, ten minutes.

5.4.2 Error Handling

Before going into details of the supervision and error handling in an Erlang system, let us see how Erlang processes
terminate, or in Erlang terminology, exit.

A process which executesexi t (nor mal) or simply runs out of things to do has anormal exit.

A process which encounters aruntime error (for example, divide by zero, bad match, trying to call afunction that does
not exist and so on) exits with an error, that is, has an abnormal exit. A process which executes exit(Reason) where
Reason isany Erlang term except the atom nor nmal , also has an abnormal exit.

An Erlang process can set up linksto other Erlang processes. If aprocesscallslink(Other _Pid) it setsup abidirectional
link between itself and the process called O her _Pi d. When aprocess terminates, it sends something called asignal
to al the processesit has links to.

The signal carries information about the pid it was sent from and the exit reason.
The default behaviour of a process that receives anormal exit isto ignore the signal.
The default behaviour in the two other cases (that is, abnormal exit) aboveis to:

* Bypassal messagesto the receiving process.
» Kill the receiving process.
* Propagate the same error signal to the links of the killed process.

In thisway you can connect all processesin atransaction together using links. If one of the processes exits abnormally,
all the processes in the transaction are killed. Asit is often wanted to create a process and link to it at the same time,
thereis a specia BIF, spawn_link that does the same as spawn, but also creates alink to the spawned process.

Now an example of the ping pong example using links to terminate "pong":

110 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.4 Robustness

-module(tut20).

-export([start/1,

ping(N, Pong Pid) ->
link(Pong Pid),
pingl(N, Pong Pid).

pingl(0,) ->
exit(ping);

pingl(N, Pong Pid) ->
Pong Pid ! {ping, self()},
receive

pong

->

ping/2, pong/0]).

io:format("Ping received pong~n", [1])

end,
pingl(N - 1, Pong Pid).

pong() ->

start(Ping Node) ->
PongPID = spawn(tut20, pong, []),
spawn(Ping Node, tut20, ping, [3, PongPID]).

receive

{ping, Ping PID} ->
io:format("Pong received ping~n", [1),
Ping PID ! pong,
pong ()

end.

(s1@bill)3> tut20:start(s2@kosken).

Pong

received

<3820.41.0>

Ping
Pong
Ping
Pong
Ping

received
received
received
received
received

ping

pong
ping
pong
ping
pong

Thisis a dlight modification of the ping pong program where both processes are spawned from the samestart/ 1
function, and the "ping" process can be spawned on a separate node. Notice the use of the | i nk BIF. "Ping" calls
exi t (pi ng) when it finishes and this causes an exit signal to be sent to "pong", which also terminates.

It is possible to modify the default behaviour of a process so that it does not get killed when it receives abnormal
exit signals. Instead, all signals are turned into normal messagesontheformat {' EXI T' , Fr onPI D, Reason} and
added to the end of the receiving process message queue. This behaviour is set by:

process flag(trap exit, true)

There are several other process flags, see erlang(3). Changing the default behaviour of aprocessin thisway isusually
not donein standard user programs, but is|eft to the supervisory programsin OTP. However, the ping pong program
ismodified to illustrate exit trapping.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 111

5.4 Robustness

-module(tut2l).
-export([start/1, ping/2, pong/0]).

ping(N, Pong Pid) ->
link(Pong Pid),
pingl(N, Pong Pid).

pingl(0,) ->
exit(ping);

pingl(N, Pong Pid) ->
Pong Pid ! {ping, self()},
receive
pong ->
io:format("Ping received pong~n", [])
end,
pingl(N - 1, Pong Pid).

pong() ->
process flag(trap exit, true),
pongl().

pongl() ->
receive
{ping, Ping PID} ->
io:format("Pong received ping~n", [1),
Ping PID ! pong,
pongl();
{'EXIT', From, Reason} ->
io:format("pong exiting, got ~p~n", [{'EXIT', From, Reason}])
end.

start(Ping Node) ->
PongPID = spawn(tut2l, pong, []),
spawn(Ping Node, tut2l, ping, [3, PongPID]).

(sl@bill) 1> tut2l:start(s2@gollum).
<3820.39.0>

Pong received ping

Ping received pong

Pong received ping

Ping received pong

Pong received ping

Ping received pong

pong exiting, got {'EXIT',<3820.39.0>,ping}

5.4.3 The Larger Example with Robustness Added

Let usreturn to the messenger program and add changes to make it more robust:

112 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.4 Robustness

%% Message passing utility.

%% User interface:

%% Login(Name)

6% One user at a time can log in from each Erlang node in the

6% system messenger: and choose a suitable Name. If the Name

6% is already logged in at another node or if someone else is

6% already logged in at the same node, login will be rejected

%% with a suitable error message.

%% Logoff()

%% Logs off anybody at that node

%% message(ToName, Message)

6% sends Message to ToName. Error messages if the user of this

6% function is not logged on or if ToName is not logged on at

%% any node.

%% One node in the network of Erlang nodes runs a server which maintains
%% data about the logged on users. The server is registered as "messenger'
%% Each node where there is a user logged on runs a client process registered
%% as "mess client"

%% Protocol between the client processes and the server

To server: {ClientPid, logon, UserName}
Reply {messenger, stop, user exists at other node} stops the client
Reply {messenger, logged on} logon was successful

When the client terminates for some reason
To server: {'EXIT', ClientPid, Reason}

Reply: {messenger, stop, you are not logged on} stops the client
Reply: {messenger, receiver not found} no user with this name logged on
Reply: {messenger, sent} Message has been sent (but no guarantee)

To client: {message from, Name, Message},

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
%% To server: {ClientPid, message to, ToName, Message} send a message
%
o
o
o
o
o
o
o
o
o
o
% Protocol between the "commands" and the client
O,

% Started: messenger:client(Server Node, Name)
% To client: logoff
%% To client: {message to, ToName, Message}

Configuration: change the server node() function to return the
name of the node where the messenger server runs

-module(messenger).
-export([start server/0, server/0,
logon/1, logoff/0, message/2, client/2]).

% Change the function below to return the name of the node where the
% messenger server runs

server_node() ->

messenger@super.

@ of

)
i
)

i

%% This is the server process for the "messenger"

%% the user list has the format [{ClientPidl, Namel}, {ClientPid22, Name2},...]
server() ->

process flag(trap exit, true),

server([]).

@ of

server(User List) ->
receive
{From, logon, Name} ->

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 113

5.4 Robustness

New User List = server logon(From, Name, User List),
server(New User List);

{'EXIT', From, } ->
New User List = server logoff(From, User List),
server(New User List);

{From, message to, To, Message} ->
server_transfer(From, To, Message, User List),
io:format("list is now: ~p~n", [User List]),
server(User List)

end.

%%% Start the server
start _server() ->
register(messenger, spawn(messenger, server, [])).

%%% Server adds a new user to the user list
erver_logon(From, Name, User List) ->
%% check if logged on anywhere else
case lists:keymember(Name, 2, User List) of

w

true ->
From ! {messenger, stop, user exists at other node}, %reject logon
User List;
false ->
From ! {messenger, logged on},
link(From),
[{From, Name} | User List] %add user to the list

end.

%%% Server deletes a user from the user list
server_logoff(From, User List) ->
lists:keydelete(From, 1, User List).

%%% Server transfers a message between user
server_transfer(From, To, Message, User List) ->
%% check that the user is logged on and who he is
case lists:keysearch(From, 1, User List) of
false ->
From ! {messenger, stop, you are not logged on};
{value, { , Name}} ->
server_transfer(From, Name, To, Message, User List)
end.

%%% If the user exists, send the message
server_transfer(From, Name, To, Message, User List) ->
%% Find the receiver and send the message
case lists:keysearch(To, 2, User List) of
false ->
From ! {messenger, receiver not found};
{value, {ToPid, To}} ->
ToPid ! {message from, Name, Message},
From ! {messenger, sent}
end.

%%% User Commands
logon(Name) ->
case whereis(mess client) of
undefined ->
register(mess client,
spawn(messenger, client, [server node(), Name]));
_ -> already logged on
end.

logoff() ->
mess_client ! logoff.

114 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.4 Robustness

message(ToName, Message) ->
case whereis(mess client) of % Test if the client is running
undefined ->
not logged on;
-> mess_client ! {message to, ToName, Message},
ok

end.

%%% The client process which runs on each user node
client(Server Node, Name) ->
{messenger, Server Node} ! {self(), logon, Name},
await result(),
client(Server Node).

client(Server Node) ->
receive
logoff ->
exit(normal);
{message to, ToName, Message} ->
{messenger, Server Node} ! {self(), message to, ToName, Message},
await result();
{message from, FromName, Message} ->
io:format("Message from ~p: ~p~n", [FromName, Message])
end,
client(Server Node).

%%% wait for a response from the server
await result() ->
receive
{messenger, stop, Why} -> % Stop the client
io:format("~p~n", [Whyl),
exit(normal);
{messenger, What} -> 9% Normal response
io:format("~p~n", [What])
after 5000 ->
io:format("No response from server~n", []),
exit(timeout)
end.

The following changes are added:

The messenger server traps exits. If it receives an exit signal, {' EXI T' , Fr om Reason}, this means that a client
process has terminated or is unreachable for one of the following reasons:

* Theuser haslogged off (the "logoff" message is removed).

e The network connection to the client is broken.

* The node on which the client process resides has gone down.

e Theclient processes has done someillegal operation.

If an exit signal is received as above, the tuple { Fr om Nane} is deleted from the servers User _Li st using the
server _| ogof f function. If the node on which the server runs goes down, an exit signal (automatically generated

by the system) is sent to all of the client processes: {' EXI T' , Messenger PI D, noconnect i on} causing al the
client processes to terminate.

Also, atime-out of five seconds has been introduced intheawai t _r esul t function. That is, if the server does not
reply within five seconds (5000 ms), the client terminates. Thisis only needed in the logon sequence before the client
and the server are linked.

An interesting case is if the client terminates before the server links to it. This is taken care of because linking to a
non-existent process causes an exit signal, {' EXI T' , Fr om nopr oc}, to be automatically generated. Thisis asif
the process terminated immediately after the link operation.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 115

5.5 Records and Macros

5.5 Records and Macros

Larger programs are usually written as a collection of files with awell-defined interface between the various parts.

5.5.1 The Larger Example Divided into Several Files
To illustrate this, the messenger example from the previous section is divided into the following five files:
e nmess_config. hrl

Header file for configuration data
e nmess_interface. hrl

Interface definitions between the client and the messenger
e user_interface.erl

Functions for the user interface
e nmess_client.erl

Functions for the client side of the messenger
e nmess_server.erl

Functions for the server side of the messenger

While doing this, the message passing interface between the shell, the client, and the server is cleaned up and is defined
using recor ds. Also, macr os are introduced:

%%%- - - -FILE mess_config.hrl----

%%% Configure the location of the server node,
-define(server node, messenger@super).

%%%- - - -END FILE----

o°

%%- - --FILE mess interface.hrl----

Message interface between client and server and client shell for
messenger program

o o°

LX)
670
LX)

670

%%Messages from Client to server received in server/1 function.
record(logon, {client pid, username}).

-record(message, {client pid, to name, message}).

%% {'EXIT', ClientPid, Reason} (client terminated or unreachable.

o

o°

o

%% Messages from Server to Client, received in await result/0 function
record(abort _client, {message}).
Messages are: user exists at other node,
you are not logged on
record(server_reply,{message}).
Messages are: logged on
receiver not found
sent (Message has been sent (no guarantee)
Messages from Server to Client received in client/1 function
record(message from,{from name, message}).

()
"o
()

"o

1R o
o® o°

%
%
%
%

1P d° o° o
o° o° o° o°

%% Messages from shell to Client received in client/1 function

%%% spawn(mess client, client, [server node(), Name])
-record(message to,{to name, message}).
%%% logoff

%%%- - - -END FILE----

116 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.5 Records and Macros

%%%- - --FILE user interface.erl----

User interface to the messenger program
login(Name)

o o o o o o o
X P P P P P ®
® o® o® o° o o° o°

with a suitable error message.

logoff()
Logs off anybody at that node

@ of
@ o°
o° o°

message(ToName, Message)

o o° o o
o® o° o° o°

%
%
%
%

any node.

-module(user_interface).
-export([logon/1, logoff/0, message/2]).
-include("mess interface.hrl").
-include("mess config.hrl").

logon(Name) ->
case whereis(mess client) of
undefined ->
register(mess client,
spawn(mess client, client,
_ -> already logged on
end.

logoff() ->
mess client ! logoff.

message(ToName, Message) ->

One user at a time can log in from each Erlang node in the
system messenger: and choose a suitable Name. If the Name
is already logged in at another node or if someone else is
already logged in at the same node, login will be rejected

sends Message to ToName. Error messages if the user of this
function is not logged on or if ToName is not logged on at

[?server _node, Namel));

case whereis(mess client) of % Test if the client is running

undefined ->
not logged on;

_ -> mess_client ! #message to{to name=ToName, message=Message},

ok
end.

%%%- - - -END FILE----

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 117

5.5 Records and Macros

%%%----FILE mess client.erl----
%%% The client process which runs on each user node

-module(mess client).
-export([client/2]).
-include("mess interface.hrl").

client(Server Node, Name) ->
{messenger, Server Node} ! #logon{client pid=self(), username=Name},
await result(),
client(Server Node).

client(Server Node) ->
receive
logoff ->
exit(normal);
#message to{to name=ToName, message=Message} ->
{messenger, Server Node} !
#message{client pid=self(), to name=ToName, message=Message},
await result();
{message from, FromName, Message} ->
io:format("Message from ~p: ~p~n", [FromName, Messagel)
end,
client(Server Node).
%%% wait for a response from the server
await result() ->
receive
#abort client{message=Why} ->
io:format("~p~n", [Whyl),
exit(normal);
#server reply{message=What} ->
io:format("~p~n", [What])
after 5000 ->
io:format("No response from server~n", []),
exit(timeout)
end.

%%%- - - -END FILE---

118 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.5 Records and Macros

%%%----FILE mess server.erl----
%%% This is the server process of the messenger service

-module(mess_server).
-export([start server/0, server/0]).
-include("mess interface.hrl").

server() ->
process flag(trap exit, true),
server([]).

%%% the user list has the format [{ClientPidl, Namel},{ClientPid22, Name2},...]
server(User List) ->

io:format("User list = ~p~n", [User List]),

receive

#logon{client pid=From, username=Name} ->
New User List = server logon(From, Name, User List),
server(New User List);

{'EXIT', From, } ->
New User List = server logoff(From, User List),
server(New User List);

#message{client pid=From, to name=To, message=Message} ->
server_transfer(From, To, Message, User List),
server(User List)

end.

%%% Start the server
start _server() ->
register(messenger, spawn(?MODULE, server, [1)).

%%% Server adds a new user to the user list
server_logon(From, Name, User List) ->

%% check if logged on anywhere else

case lists:keymember(Name, 2, User List) of

true ->
From ! #abort client{message=user exists at other node},
User List;
false ->
From ! #server reply{message=logged on},
link(From),
[{From, Name} | User List] %add user to the list

end.

%%% Server deletes a user from the user list
server_logoff(From, User List) ->
lists:keydelete(From, 1, User List).

%%% Server transfers a message between user
server_transfer(From, To, Message, User List) ->
%% check that the user is logged on and who he is
case lists:keysearch(From, 1, User List) of
false ->
From ! #abort client{message=you are not logged on};
{value, { , Name}} ->
server_transfer(From, Name, To, Message, User List)
end.
%%% If the user exists, send the message
server_transfer(From, Name, To, Message, User List) ->
%% Find the receiver and send the message
case lists:keysearch(To, 2, User List) of
false ->
From ! #server reply{message=receiver not found};
{value, {ToPid, To}} ->
ToPid ! #message from{from name=Name, message=Message},

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 119

5.5 Records and Macros

From ! #server reply{message=sent}
end.

%%%- - - -END FILE---

5.5.2 Header Files

As shown above, some files have extension . hr | . These are header filesthat areincluded inthe . er | filesby:
-include("File Name").

for example:
-include("mess interface.hrl").

Inthe case abovethefileisfetched from the samedirectory asall the other filesin the messenger example. (* manual*).
.hrl files can contain any valid Erlang code but are most often used for record and macro definitions.

5.5.3 Records
A record is defined as:
-record(name_of record,{field namel, field name2, field name3,
For example:
-record(message to,{to name, message}).
Thisisequivalent to:
{message to, To Name, Message}
Creating arecord is best illustrated by an example:
#message to{message="hello", to name=fred)
This creates:
{message to, fred, "hello"}

Notice that you do not have to worry about the order you assign values to the various parts of the records when you
create it. The advantage of using recordsisthat by placing their definitions in header files you can conveniently define
interfaces that are easy to change. For example, if you want to add a new field to the record, you only have to change
the code where the new field is used and not at every place the record is referred to. If you leave out a field when
creating arecord, it gets the value of the atom undef i ned. (*manual*)

Pattern matching with records is very similar to creating records. For example, insideacase or r ecei ve:
#message to{to name=ToName, message=Message} ->
Thisisthe same as:

{message to, ToName, Message}

5.5.4 Macros

Another thing that has been added to the messenger isamacro. Thefilemess_confi g. hr| containsthe definition:

120 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.5 Records and Macros

%%% Configure the location of the server node,
-define(server node, messenger@super).

Thisfileisincluded inness_server.erl:
-include("mess config.hrl").

Every occurrence of ?ser ver _node inness_server. erl isnow replaced by nessenger @uper .
A macro is also used when spawning the server process:

spawn (?MODULE, server, [])

Thisis a standard macro (that is, defined by the system, not by the user). ?MODULE is always replaced by the name
of the current module (that is, the - nodul e definition near the start of the file). There are more advanced ways of
using macros with, for example, parameters (* manual*).

Thethree Erlang (. er |) filesin the messenger example are individually compiled into object codefile (. bean)j. The
Erlang system loads and links these files into the system when they are referred to during execution of the code. In
this case, they are simply put in our current working directory (that is, the place you have done "cd" to). There are
ways of putting the . beamfilesin other directories.

In the messenger example, no assumptions have been made about what the message being sent is. It can be any valid
Erlang term.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 121

6.1 Introduction

6 Erlang Reference Manual

6.1 Introduction

This section is the Erlang reference manual. It describes the Erlang programming language.

6.1.1 Purpose

Thefocusof the Erlang reference manual ison thelanguageitself, not theimplementation of it. Thelanguage constructs
are described in text and with examples rather than formally specified. Thisisto make the manual more readable. The
Erlang reference manual is not intended as a tutorial.

Information about implementation of Erlang can, for example, be found, in the following:
e SystemPrinciples
Starting and stopping, boot scripts, code loading, logging, creating target systems
» Efficiency Guide
Memory consumption, system limits
* ERTSUser'sGuide
Crash dumps, drivers

6.1.2 Prerequisites

It is assumed that the reader has done some programming and is familiar with concepts such as data types and
programming language syntax.

6.1.3 Document Conventions

In this section, the following terminology is used:

* A sequenceisoneor moreitems. For example, a clause body consists of a sequence of expressions. This means
that there must be at least one expression.

e Alist isany number of items. For example, an argument list can consist of zero, one, or more arguments.
If afeature has been added in R13A or later, thisis mentioned in the text.

6.1.4 Complete List of BIFs

For acomplete list of BIFs, their arguments and return values, see erlang(3) manual pagein ERTS.

6.1.5 Reserved Words

The following are reserved wordsin Erlang:

after and andal so band begi n bnot bor bsl bsr bxor case catch cond div end fun
if let not of or orelse receive remtry when xor

122 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.2 Character Set and Source File Encoding

6.2 Character Set and Source File Encoding

6.2.1 Character Set

The syntax of Erlang tokens allow the use of the full 1SO-8859-1 (Latin-1) character set. This is noticeable in the
following ways:

e All the Latin-1 printable characters can be used and are shown without the escape backslash convention.
e Atomsand variables can use al Latin-1 |etters.

Octal Decimal Class
200 - 237 128 - 159 Control characters
240 - 277 160 - 191 - ¢ | Punctuation characters
300 - 326 192 - 214 A-0 Uppercase letters

327 215 X Punctuation character
330 - 336 216 - 222 a-p Uppercase letters
337 - 366 223 - 246 k-6 Lowercase letters

367 247 + Punctuation character
370- 377 248 - 255 g-y Lowercase letters

Table 2.1: Character Classes

In Erlang/OTP R16B the syntax of Erlang tokens was extended to handle Unicode. The support was limited to string
literals and comments. M ore about the usage of Unicodein Erlang sourcefilescan befoundin STDLIB's User's Guide.

From Erlang/OTP 20, atoms and function names are also allowed to contain Unicode characters outside the |SO-
Latin-1 range. Module names, application names, and node names are still restricted to the ISO-Latin-1 range.

6.2.2 Source File Encoding

The Erlang source file encodi ng is selected by a comment in one of the first two lines of the source file. The first
string that matches the regular expression codi ng\ s*[: =]\ s* ([- a- zA- Z0- 9]) + selects the encoding. If the
matching string is an invalid encoding, it isignored. The valid encodings are Lat i n- 1 and UTF- 8, where the case
of the characters can be chosen fredly.

The following example selects UTF-8 as default encoding:

%% coding: utf-8

Two more examples, both selecting Latin-1 as default encoding:

%% For this file we have chosen encoding = Latin-1

%% -*- coding: latin-1 -*-

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 123

6.3 Data Types

The default encoding for Erlang source filesis changed from Latin-1 to UTF-8 since Erlang/OTP 17.0.

6.3 Data Types

Erlang provides a number of data types, which are listed in this section.

6.3.1 Terms
A piece of data of any datatypeiscalled aterm.

6.3.2 Number

There are two types of numeric literals, integer s and floats. Besides the conventional notation, there are two Erlang-
specific notations:

* S$char
ASCII value or unicode code-point of the character char .

* Dbase#val ue
Integer with the base base, that must be an integer in the range 2..36.

Examples:

1> 42.

42

2> $A.

65

3> $\n.
10

4> 2#101.
3

5> 16#1f.
31

6> 2.3.
2.3

7> 2.3e3.
2.3e3

8> 2.3e-3.
0.0023

6.3.3 Atom

An atom is aliteral, a constant with name. An atom is to be enclosed in single quotes (') if it does not begin with a
lower-case letter or if it contains other characters than alphanumeric characters, underscore (), or @.

Examples:

hello

phone number
'Monday'
'phone number'

6.3.4 Bit Strings and Binaries

A bit string is used to store an area of untyped memory.
Bit strings are expressed using the bit syntax.
Bit strings that consist of a number of bitsthat are evenly divisible by eight, are called binaries

124 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.3 Data Types

Examples:

1> <<10,20>>.
<<10,20>>

2> <<"ABC">>,
<<"ABC">>

1> <<1:1,0:1>>.
<<2:2>>

For more examples, see Programming Examples.

6.3.5 Reference

A referenceis aterm that is unique in an Erlang runtime system, created by calling make_r ef / 0.

6.3.6 Fun

A funisafunctional object. Funs make it possible to create an anonymous function and pass the function itself -- not
its name -- as argument to other functions.

Example:

1> Funl = fun (X) -> X+1 end.

#Fun<erl eval.6.39074546>

2> Funl(2).
3

Read more about funsin Fun Expressions. For more examples, see Programming Examples.

6.3.7 Port Identifier

A port identifier identifies an Erlang port.

open_port/ 2, whichisused to create ports, returns avalue of this data type.

Read more about portsin Ports and Port Drivers.

6.3.8 Pid

A process identifier, pid, identifies a process.

The following BIFs, which are used to create processes, return values of this data type:

e spawn/1,2,3,4

e spawn_link/1,2, 3,4

e spawn_opt/4
Example:

1> spawn(m, f, []).
<0.51.0>

In the following example, the BIF sel f () returnsthe pid of the calling process:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 125

6.3 Data Types

-module(m).
-export([loop/0]).

loop() ->
receive
who are you ->
io:format("I am ~p~n", [self()]),
loop()
end.

1> P = spawn(m, loop, []).
<0.58.0>

2> P ! who are you.

I am <0.58.0>

who_are you

Read more about processes in Processes.

6.3.9 Tuple

A tupleis acompound data type with afixed number of terms:

{Terml, ..., TermN}
Each term Ter min the tupleis called an element. The number of elementsis said to be the size of the tuple.
There exists a number of BIFs to manipulate tuples.

Examples:

1> P = {adam,24,{july,29}}.
{adam, 24, {july,29}}

2> element(1,P).

adam

3> element(3,P).

{july, 29}

4> P2 = setelement(2,P,25).
{adam, 25, {july,29}}

5> tuple size(P).

3

6> tuple size({}).

0

6.3.10 Map

A map is acompound data type with a variable number of key-value associations:

#{Keyl=>Valuel, ..., KeyN=>ValueN}

Each key-value association in the map is called an association pair. The key and value parts of the pair are called
elements. The number of association pairsis said to be the size of the map.

There exists anumber of BIFs to manipul ate maps.

Examples:

126 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.3 Data Types

1> M1 = #{name=>adam,age=>24,date=>{july,29}}.
#{age => 24,date => {july,29},name => adam}
2> maps:get(name,M1).

adam

3> maps:get(date,M1).

{july,29}

4> M2 = maps:update(age,25,M1).

#{age => 25,date => {july,29},name => adam}
5> map_size(M).

3

6> map_size(#{}).

0

A collection of maps processing functions can be found in maps manual pagein STDLIB.

Read more about mapsin Map Expressions.

Maps are considered to be experimental during Erlang/OTP R17.

6.3.11 List

A list is a compound data type with a variable number of terms.

[Terml,...,TermN]

Each term Ter min thelist is called an element. The number of elementsis said to be the length of thelist.
Formally, alist is either the empty list [] or consists of ahead (first element) and atail (remainder of the list). The

tail isalso alist. The latter can be expressed as[H| T] . The notation [Ter m, . . ., Ter nl\] above is equivalent
withthelist[TerntL| [...|[TermN []1]]].

Example:

[1 isalist, thus

[cl[]] isalist, thus
[bl[cl[]1]] isalig, thus
[al[b][c|[]11]] isalist,orinshort| a, b, c]

A list where the tail isalist is sometimes called a proper list. It is allowed to have alist where the tail is not alist,
for example, [a| b] . However, thistype of list is of little practical use.

Examples:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 127

6.3 Data Types

1> L1 = [a,2,{c,4}].
[a,2,{c,4}]

2> [H|T] = L1.
[a,2,{c,4}]

3> H.

a

4> T.
[2,{c,4}]

5> L2 = [d|T].
[d,2,{c,4}]

6> length(L1).
3

7> length([1]).
0

A collection of list processing functions can be found in the lists manual pagein STDLIB.

6.3.12 String

Strings are enclosed in double quotes ("), but is not adatatype in Erlang. Instead, astring " hel | 0" is shorthand for
thelist[$h, $e, $I , $I, $o] , thatis, [104, 101, 108, 108, 111] .

Two adjacent string literals are concatenated into one. Thisisdonein the compilation, thus, does not incur any runtime
overhead.

Example:

"String“ g

is equivalent to

"string42"

6.3.13 Record

A record is a data structure for storing a fixed number of elements. It has named fields and is similar to a struct in
C. However, arecord is not a true data type. Instead, record expressions are translated to tuple expressions during
compilation. Therefore, record expressions are not understood by the shell unless special actions are taken. For details,
see the shell(3) manual pagein STDLIB).

Examples:
-module(person).
-export([new/2]).
-record(person, {name, age}).

new(Name, Age) ->
#person{name=Name, age=Age}.

1> person:new(ernie, 44).
{person,ernie, 44}

Read more about records in Records. More examples can be found in Programming Examples.

128 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.3 Data Types

6.3.14 Boolean

There is no Boolean data type in Erlang. Instead the atomst r ue and f al se are used to denote Boolean values.

Examples:

1> 2 =< 3.

true

2> true or false.
true

6.3.15 Escape Sequences
Within strings and quoted atoms, the following escape sequences are recognized:

Sequence Description

\b Backspace

\d Delete

\e Escape

\f Form feed

\n Newline

\r Carriage return

\s Space

\t Tab

\v Vertical tab

\XYZ,\YZ,\z Character with octal representation XYZ, YZ or Z

\XXY Character with hexadecimal representation XY

WX} Character with h_exadeci mal representation; X... isone
or more hexadecimal characters

t:Z\C'\ZZ Control A to control Z

\ Single quote

\" Double quote

\\ Backslash

Table 3.1: Recognized Escape Sequences

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 129

6.4 Pattern Matching

6.3.16 Type Conversions
There are anumber of BIFsfor type conversions.
Examples:

1> atom to list(hello).

"hello"

2> list to atom("hello").

hello

3> binary to list(<<"hello">>).
"hello"

4> binary to list(<<104,101,108,108,111>>).
"hello"

5> list to binary("hello").
<<104,101,108,108,111>>

6> float to list(7.0).
"7.00000000000000000000e+00"

7> list to float("7.000e+00").

7.0

8> integer to list(77).
ng7n

9> list to integer("77").
77

10> tuple to list({a,b,c}).
[a,b,c]

11> list to tuple([a,b,c]).
{a,b,c}

12> term to binary({a,b,c}).
<<131,104,3,100,0,1,97,100,0,1,98,100,0,1,99>>
13> binary to term(<<131,104,3,100,0,1,97,100,0,1,98,100,0,1,99>>).
{a,b,c}

14> binary to integer(<<"77">>).

77

15> integer to binary(77).

<<"77">>

16> float to binary(7.0).
<<"7.00000000000000000000e+00">>

17> binary to float(<<"7.000e+00">>).

7.0

6.4 Pattern Matching
6.4.1 Pattern Matching

Variables are bound to values through the patter n matching mechanism. Pattern matching occurs when evaluating a
function call, case-r ecei ve-t r y- expressions and match operator (=) expressions.

In apattern matching, aleft-hand side pattern is matched against aright-hand side term. If the matching succeeds, any
unbound variables in the pattern become bound. If the matching fails, arun-time error occurs.

Examples:

130 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.5 Modules

1> X.

** 1: variable 'X' is unbound **
2> X = 2,

2

3> X + 1.

3

4> {X, Y} = {1, 2}.

** exception error: no match of right hand side value {1,2}
5> {X, Y} = {2, 3}.

{2,3}

6> Y.

3

6.5 Modules
6.5.1 Module Syntax

Erlang code is divided into modules. A module consists of a sequence of attributes and function declarations, each
terminated by period (.).

Example:

module attribute
module attribute

-module(m).
-export([fact/1]1).

o® o°

N) when N>0 ->
* fact(N-1);
)

beginning of function declaration

end of function declaration

->

d® o° o° o°

For a description of function declarations, see Function Declaration Syntax.

6.5.2 Module Attributes

A module attribute defines a certain property of amodule.
A module attribute consists of atag and avalue:

-Tag(Value).

Tag must be an atom, while Val ue must be aliteral term. As a convenience in user-defined attributes, if the literal
term Val ue hasthe syntax Nane/ Ari t y (where Nane isan atom and Ar i t y apositive integer), the term Nane/
Arity istranslatedto { Nane, Arity}.

Any module attribute can be specified. The attributes are stored in the compiled code and can be retrieved by calling
Modul e: nodul e_i nfo(attri butes), or by using the module beam lib(3) in STDLIB.

Several module attributes have predefined meanings. Some of them have arity two, but user-defined modul e attributes
must have arity one.

Pre-Defined Module Attributes
Pre-defined module attributesis to be placed before any function declaration.
- nodul e(Modul e) .

Module declaration, defining the name of the module. The name Mbdul e, an atom, isto be same asthefile name
minus the extension . er | . Otherwise code loading does not work as intended.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 131

6.5 Modules

This attribute is to be specified first and is the only mandatory attribute.
-export (Functions).

Exported functions. Specifies which of the functions, defined within the module, that are visible from outside
the module.

Functions isalist [Namel/ Arityl, ..., NarmeN ArityN], where each Nanel is an atom and
Arityl aninteger.

-i nport (Modul e, Functi ons).

Imported functions. Can be called the same way aslocal functions, that is, without any module prefix.

Modul e, anatom, specifieswhich moduletoimport functionsfrom. Funct i ons isalist similar asforexport .
-conpi | e(Options).

Compiler options. Opt i ons isasingle option or alist of options. This attribute is added to the option list when
compiling the module. See the compile(3) manual page in Compiler.

-vsn(Vsn).

Module version. Vsn is any literal term and can be retrieved using beam | i b: ver si on/ 1, see the
beam lib(3) manual pagein STDLIB.

If this attribute is not specified, the version defaults to the MD5 checksum of the module.
-on_l oad(Function).

This attribute names a function that is to be run automatically when a module is loaded. For more information,
see Running a Function When a Module is Loaded.

Behaviour Module Attribute
It is possible to specify that the module is the callback module for abehaviour:

-behaviour(Behaviour).

TheatomBehavi our givesthe name of the behaviour, which can be auser-defined behaviour or one of thefollowing
OTP standard behaviours:

e gen_server
e gen_statem
* gen_event

e supervisor

The spelling behavi or isalso accepted.
The callback functions of the module can be specified either directly by the exported functionbehavi our _i nf o/ 1:

behaviour info(callbacks) -> Callbacks.

or by a- cal | back attribute for each callback function:

-callback Name(Arguments) -> Result.

Here, Ar gunent s isalist of zero or more arguments. The - cal | back attribute is to be preferred since the extra
type information can be used by tools to produce documentation or find discrepancies.

Read more about behaviours and callback modulesin OTP Design Principles.

132 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.5 Modules

Record Definitions

The same syntax as for module attributes is used for record definitions:

-record(Record, Fields).
Record definitions are allowed anywhere in amodule, also among the function declarations. Read more in Records.

Preprocessor

The same syntax as for module attributes is used by the preprocessor, which supports file inclusion, macros, and
conditional compilation:

-include("SomeFile.hrl").
-define(Macro,Replacement).

Read more in Preprocessor.

Setting File and Line

The same syntax as for module attributes is used for changing the pre-defined macros ?FI LE and ?LI1 NE:

-file(File, Line).

This attribute is used by tools, such as Y ecc, to inform the compiler that the source program is generated by another
tool. It aso indicates the correspondence of source filesto lines of the original user-written file, from which the source
program is produced.

Types and function specifications

A similar syntax as for module attributes is used for specifying types and function specifications:

-type my type() :: atom() | integer().
-spec my function(integer()) -> integer().

Read more in Types and Function specifications.
The description is based on EEP8 - Types and function specifications, which is not to be further updated.

6.5.3 Comments

Comments can be placed anywhere in a module except within strings and quoted atoms. A comment begins with the
character "%", continues up to, but does not include the next end-of-line, and has no effect. Notice that the terminating
end-of-line has the effect of white space.

6.5.4 module_info/0 and module_info/1 functions

The compiler automatically inserts the two special, exported functions into each module;

e« Mbodul e: nodul e_info/0
e Modul e: nodul e_info/1l

These functions can be called to retrieve information about the module.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 133

href

6.6 Functions

module_info/0
The nodul e_i nf o/ 0 function in each module, returns alist of { Key, Val ue} tupleswith information about the
module. Currently, the list contain tuples with the following Keys: nodul e, attri but es, conpi | e, export s,
nd5 and nat i ve. The order and number of tuples may change without prior notice.
module_info/1
Thecall nodul e_i nf o(Key) , where Key is an atom, returns a single piece of information about the module.
The following values are allowed for Key:
nodul e
Returns an atom representing the module name.
attributes

Returns a list of { Attri but eNane, Val uelLi st} tuples, where At tri but eName is the name of an
attribute, and Val uelLi st isalist of values. Notice that a given attribute can occur more than once in the list
with different values if the attribute occurs more than once in the module.

Thelist of attributes becomes empty if the module is stripped with the beam |ib(3) module (in STDLIB).
conpile

Returns a list of tuples with information about how the module was compiled. This list is empty if the module
has been stripped with the beam lib(3) module (in STDLIB).

nd5

Returns a binary representing the MD5 checksum of the module. If the module has native code loaded, this will
be the MD5 of the native code, not the BEAM bytecode.

exports

Returnsalist of { Nanme, Ari t y} tupleswith al exported functions in the module.
functions

Returnsalist of { Nane, Ari ty} tupleswith all functionsin the module.
nifs

Returnsalist of { Name, Ari t y} tupleswith al NIF functionsin the module.
native

Returnt r ue if the module has native compiled code. Return f al se otherwise. In a system compiled without
HiPE support, theresult isalwaysf al se

6.6 Functions

6.6.1 Function Declaration Syntax
A function declaration is a sequence of function clauses separated by semicolons, and terminated by period (.).
A function clause consists of a clause head and a clause body, separated by - >.

A clause head consists of the function name, an argument list, and an optional guard sequence beginning with the
keyword when:

134 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.6 Functions

Name(Patternll,...,PatternlN) [when GuardSeql] ->
Body1l;

Name (PatternKl,...,PatternKN) [when GuardSegK] ->
BodyK.

The function name is an atom. Each argument is a pattern.

The number of arguments Nisthe arity of the function. A function is uniquely defined by the module name, function
name, and arity. That is, two functions with the same name and in the same module, but with different arities are two
different functions.

A function named f in the module mand with arity Nis often denoted asm f / N.

A clause body consists of a sequence of expressions separated by comma. (,):

Exprl,

Expri
Valid Erlang expressions and guard sequences are described in Expressions.
Example:

fact(N) when N>0 ->
N * fact(N-1);

first clause head
first clause body

o® o°

second clause head

fact(0) ->
1. second clause body

o o°

6.6.2 Function Evaluation

When afunctionm f / Niscalled, first the code for the function islocated. If the function cannot be found, an undef
runtime error occurs. Notice that the function must be exported to be visible outside the module it is defined in.

If the function is found, the function clauses are scanned sequentially until a clause is found that fulfills both of the
following two conditions:

* The patternsin the clause head can be successfully matched against the given arguments.
e Theguard sequence, if any, istrue.

If such a clause cannot be found, af unct i on_cl ause runtime error occurs.

If such aclauseisfound, the corresponding clause body is evaluated. That is, the expressionsin the body are evaluated
sequentially and the value of the last expression is returned.

Consider the function f act :

-module(m).
-export([fact/1]).
fact(N) when N>0 ->
* fact(N-1);
) ->

fact (0

(
N
(
1

Assume that you want to calculate the factoria for 1:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 135

6.6 Functions

1> m:fact(1l).

Evaluation starts at thefirst clause. The pattern Nis matched against argument 1. The matching succeeds and the guard
(N>0) istrue, thus Nis bound to 1, and the corresponding body is evaluated:

N * fact(N-1) => (N is bound to 1)
1 * fact(0)

Now, f act (0) is called, and the function clauses are scanned sequentially again. First, the pattern N is matched
against 0. The matching succeeds, but theguard (N>0) isfal se. Second, the pattern 0 ismatched against 0. The matching
succeeds and the body is evaluated:

*
*

fact(0) =>
1

=>

SRS

Evaluation has succeed and m f act (1) returns 1.

Ifm f act / 1 iscalled with anegative number asargument, no clause head matches. A f unct i on_cl ause runtime
error occurs.

6.6.3 Tail recursion

If the last expression of a function body is a function call, atail recursive cal is done. This is to ensure that no
system resources, for example, call stack, are consumed. This means that an infinite loop can be done if it uses tail-
recursive calls.

Example:

loop(N) ->
io:format("~w~n", [N]),
loop(N+1) .

The earlier factorial example can act as a counter-example. It is not tail-recursive, since a multiplication is done on
the result of therecursivecall tof act (N-1) .

6.6.4 Built-In Functions (BIFs)

BIFs are implemented in C code in the runtime system. BIFs do things that are difficult or impossible to implement
in Erlang. Most of the BIFs belong to the module er | ang but there are also BIFs belonging to a few other modules,
for examplel i st s and et s.

The most commonly used BIFs belonging to er | ang(3) are auto-imported. They do not need to be prefixed with
the module name. Which BIFs that are auto-imported is specified in the erlang(3) module in ERTS. For example,
standard-type conversion BIFs likeat om t o_| i st and BIFs allowed in guards can be called without specifying
the module name.

Examples:

1> tuple size({a,b,c}).

3

2> atom_to list('Erlang').
"Erlang"

Noticethat it isnormally the set of auto-imported BIFsthat are referred to when talking about 'BIFS.

136 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.7 Types and Function Specifications

6.7 Types and Function Specifications

6.7.1 The Erlang Type Language

Erlang is a dynamically typed language. Still, it comes with a notation for declaring sets of Erlang terms to form a
particular type. This effectively forms specific subtypes of the set of all Erlang terms.

Subsequently, these types can be used to specify types of record fields and also the argument and return types of
functions.

Type information can be used for the following:

e Todocument function interfaces
e To provide moreinformation for bug detection tools, such as Dialyzer
* To be exploited by documentation tools, such as EDac, for generating program documentation of various forms

It is expected that the type language described in this section supersedes and replaces the purely comment-based
@ ype and @ pec declarations used by EDoc.

6.7.2 Types and their Syntax

Types describe sets of Erlang terms. Types consist of, and are built from, a set of predefined types, for example,
i nteger(),atonm(),andpi d() . Predefined types represent atypicaly infinite set of Erlang terms that belong to
thistype. For example, thetype at on{) denotesthe set of al Erlang atoms.

For integersand atoms, it isallowed for singleton types; for example, theintegers- 1 and 42, or theatoms' f oo’ and
"bar' . All other types are built using unions of either predefined types or singleton types. In atype union between a
type and one of its subtypes, the subtype is absorbed by the supertype. Thus, the union isthen treated asif the subtype
was not a constituent of the union. For example, the type union:

atom() | 'bar' | integer() | 42
describes the same set of terms as the type union:
atom() | integer()

Because of subtyperelationsthat exist between types, typesform alattice where the top-most element, any () , denotes
the set of all Erlang terms and the bottom-most element, none() , denotes the empty set of terms.

The set of predefined types and the syntax for types follows:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 137

6.7 Types and Function Specifications

he top type,
he bottom typ

any()
none()
pid()
port()
reference()
[

Atom
Bitstring
float()

Fun

Integer
List

Map

Tuple

Union
UserDefined

Type ::

—

oP

% described in T

Atom ::
I

Bitstring

atom()
Erlang Atom

o°

'foo', 'bar',
To<<>>
<<_:M>>
<< : *N>>

<<_:M, _: *N>>

M is an Intege
N is an Intege

@ of
o° o°

any function
any arity, ret

@ of
o® o°

.) -> Type)
-> Type)
List) -> Type)

Integer :: integer()

| Integer Value

| Integer Value..Integer Value 6%
Integer Value :: Erlang Integer
Erlang Character
Integer Value BinaryOp Integer
UnaryOp Integer Value

@ of
o° o°

BinaryOp :: '*' | ‘'div' | 'rem' | 'band' | '+'
UnaryOp :: '+' | '-' | 'bnot'
List list(Type)

maybe improper list(Typel, Type2)
nonempty improper list(Typel, Type2)
nonempty list(Type)

Map :: #{} %%
| #{AssociationList}
Tuple :: tuple() %%
| {}
| {TList}
AssociationlList :: Association
| Association, AssociationlList
Association :: Type := Type %%
| Type => Type %%
TList :: Type
| Type, TList

the set of all Erlang terms
e, contains no terms

ype Declarations of User-Defined Types

r Value that evaluates to a positive integer
r Value that evaluates to a positive integer

urning Type

specifies an integer range

..., -1, 0,
$a, $b ...
~Value

1, . 42

| | 'bor' | 'bxor' | 'bsl' | 'bsr

Proper list ([]-terminated)
Typel=contents, Type2=termination
Typel and Type2 as above

Proper non-empty list

denotes the empty map

denotes a tuple of any size

denotes a mandatory association
denotes an optional association

138 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.7 Types and Function Specifications

Union :: Typel | Type2

Integer values are either integer or character literals or expressions consisting of possibily nested unary or binary
operations that evaluate to an integer. Such expressions can also be used in bit strings and ranges.

The general form of bit stringsis<<_: M _: _*N>>, where Mand N must evaluate to positive integers. It denotes
abit string that isM + (k*N) bitslong (that is, a bit string that starts with Mbits and continues with k segments
of N bits each, where k is also apositive integer). The notations<<_: _*N>>, <<_: M>>, and <<>> are convenient
shorthands for the cases that Mor N, or both, are zero.

Because lists are commonly used, they have shorthand type notations. The types list(T) and
nonenpty_|ist(T) havetheshorthands[T] and[T, ...], respectively. The only difference between the two
shorthandsisthat [T] canbeanempty listbut[T, ...] cannot.

Notice that the shorthand for | i st (), that is, the list of elements of unknown type, is[_] (or[any()]),not[].
Thenotation [] specifies the singleton type for the empty list.

The general form of map typesis#{ Associ ati onLi st}. Thekey typesin Associ ati onLi st arealowed to
overlap, andif they do, theleftmost association takes precedence. A map associationhasakeyinAssoci at i onLi st
if it belongs to this type. Associ at i onLi st can contain both mandatory (: =) and optional (=>) association
types. If an association type is mandatory, an association with that type needs to be present. In the case of an optional
association typeit is not required for the key type to be present.

The notation #{} specifies the singleton type for the empty map. Note that this notation is not a shorthand for the
map() type.

For convenience, the following types are also built-in. They can be thought as predefined aliases for the type unions
also shown in the table.

Built-in type Defined as

term) any()

bi nary() << 1 *8>>
bitstring() << *1>>

bool ean() ‘false' | 'true'

byt e() 0..255

char () 0..16#10ffff

nil() []

nunber () integer() | float()
list() [any()]

maybe_i nproper _list() maybe_ i nproper _list(any(), any())
nonenpty list() nonenpty_list(any())
string() [char ()]
nonenpty_string() [char(),...]

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 139

6.7 Types and Function Specifications

i odat a() iolist() | binary()

olist0) arstt), im0 1 0)
map() #{any() => any()}

function() fun()

modul e() at om()

nfa() {nodul e(),atom(),arity()}
arity() 0.. 255

identifier() pid() | port() | reference()
node() at om()

timeout () "infinity' | non_neg_integer()
no_return() none()

Table 7.1: Built-in types, predefined aliases

In addition, the following three built-in types exist and can be thought as defined below, though strictly their "type

definition” is not valid syntax according to the type language defined above.

Built-in type Can bethought defined by the syntax
non_neg_i nt eger () 0..
pos_integer () 1..

neg i nteger ()

Table 7.2: Additional built-in types

Users are not allowed to define types with the same names as the predefined or built-in ones. This is checked by the
compiler and its violation resultsin a compilation error.

| The following built-in list types also exist, but they are expected to be rarely used. Hence, they have long names: |

nonempty maybe improper list() :: nonempty maybe improper list(any(), any())
nonempty improper list(Typel, Type2)
nonempty maybe improper list(Typel, Type2)

where the last two types define the set of Erlang terms one would expect.

140 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.7 Types and Function Specifications

Also for convenience, record notation is allowed to be used. Records are shorthands for the corresponding tuples:

Record :: #Erlang Atom{}
| #Erlang Atom{Fields}

Records are extended to possibly contain type information. This is described in Type Information in Record
Declarations.

6.7.3 Type Declarations of User-Defined Types

As seen, the basic syntax of atypeisan atom followed by closed parentheses. New types are declared using - t ype
and - opaque attributes asin the following:

-type my struct type() :: Type.
-opaque my opaq_type() :: Type.

Thetype nameisthe atomny_struct _t ype, followed by parentheses. Type is atype as defined in the previous
section. A current restriction is that Type can contain only predefined types, or user-defined types which are either
of the following:

e Modulelocal type, that is, with adefinition that is present in the code of the module
e Remotetype, that is, type defined in, and exported by, other modules; more about this soon.

For module-local types, the restriction that their definition existsin the module is enforced by the compiler and results
in acompilation error. (A similar restriction currently exists for records.)

Type declarations can also be parameterized by including type variables between the parentheses. The syntax of type
variables is the same as Erlang variables, that is, starts with an upper-case letter. Naturally, these variables can - and
isto - appear on the RHS of the definition. A concrete example follows:

-type orddict(Key, Val) :: [{Key, Val}].

A module can export some types to declare that other modules are allowed to refer to them as remote types. This
declaration has the following form:

-export type([T1/A1, ..., Tk/AK]).

Here the Ti's are atoms (the name of the type) and the Ai's are their arguments

Example:

-export type([my struct type/0, orddict/2]).

Assuming that these types are exported from module ' nod' , you can refer to them from other modules using remote
type expressions like the following:

mod:my struct type()
mod:orddict(atom(), term())

It isnot allowed to refer to types that are not declared as exported.

Types declared as opaque represent sets of terms whose structure is not supposed to be visible from outside of their
defining module. That is, only the module defining them is allowed to depend on their term structure. Consequently,
such types do not make much sense as module local - module local types are not accessible by other modules anyway
- and is always to be exported.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 141

6.7 Types and Function Specifications

6.7.4 Type Information in Record Declarations

The types of record fields can be specified in the declaration of the record. The syntax for thisis as follows:

-record(rec, {fieldl :: Typel, field2, field3 :: Type3}).

For fields without type annotations, their type defaults to any(). That is, the previous example is a shorthand for the
following:

-record(rec, {fieldl :: Typel, field2 :: any(), field3 :: Type3}).

In the presence of initial values for fields, the type must be declared after the initialization, as follows:

-record(rec, {fieldl = [] :: Typel, field2, field3 = 42 :: Type3}).

Theinitial valuesfor fields are to be compatible with (that is, a member of) the corresponding types. Thisis checked
by the compiler and resultsin a compilation error if aviolation is detected.

Before Erlang/OTP 19, for fieldswithout initial values, thesingletontype' undef i ned' wasaddedtoall declared
types. In other words, the following two record declarations had identical effects:

-record(rec, {fl = 42 :: integer(),
2 :: float(),
f3 i 'a' | 'b'}).
-record(rec, {fl = 42 :: integer(),
2 :: 'undefined' | float(),
f3 :: 'undefined' | 'a' | 'b'}).

Thisis no longer the case. If you require ' undef i ned' inyour record field type, you must explicitly add it to
the typespec, as in the 2nd example.

Any record, containing type information or not, once defined, can be used as a type using the following syntax:
#rec{}

In addition, the record fields can be further specified when using a record type by adding type information about the
field asfollows:

#rec{some field :: Type}

Any unspecified fields are assumed to have the typein the original record declaration.

6.7.5 Specifications for Functions

A specification (or contract) for afunction is given using the - spec attribute. The general format is as follows:

-spec Module:Function(ArgTypel, ..., ArgTypeN) -> ReturnType.

The arity of the function must match the number of arguments, else a compilation error occurs.

Thisform can also be used in header files (.hrl) to declare type information for exported functions. Then these header
files can beincluded in files that (implicitly or explicitly) import these functions.

142 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.7 Types and Function Specifications

Within a given module, the following shorthand sufficesin most cases:

-spec Function(ArgTypel, ..., ArgTypeN) -> ReturnType.

Also, for documentation purposes, argument names can be given:

-spec Function(ArgNamel :: Typel, ..., ArgNameN :: TypeN) -> RT.
A function specification can be overloaded. That is, it can have several types, separated by a semicolon (;):
-spec foo(T1l, T2) -> T3
; (T4, T5) -> T6.

A current restriction, which currently results in a warning (not an error) by the compiler, is that the domains of the
argument types cannot overlap. For example, the following specification results in awarning:

-spec foo(pos integer()) -> pos _integer()
; (integer()) -> integer().

Type variables can be used in specifications to specify relations for the input and output arguments of a function. For
example, the following specification defines the type of a polymorphic identity function:

-spec id(X) -> X.

Noticethat the above specification does not restrict theinput and output typein any way. Thesetypes can be constrained
by guard-like subtype constraints and provide bounded quantification:

-spec id(X) -> X when X :: tuple().

Currently, the: : constraint (read as «is a subtype of») isthe only guard constraint that can be used in the when part
of a- spec attribute.

The above function specification uses multiple occurrences of the same type variable. That provides more type
information than the following function specification, where the type variables are missing:

-spec id(tuple()) -> tuple().

The latter specification says that the function takes some tuple and returns some tuple. The specification with the
X type variable specifies that the function takes a tuple and returns the same tuple.

However, it is up to the tools that process the specifications to choose whether to take this extra information into
account or not.

Thescopeof a:: constraintisthe(...) -> Ret Type specification after which it appears. To avoid confusion,
it is suggested that different variables are used in different constituents of an overloaded contract, as shown in the
following example:

-spec foo({X, integer()}) -> X when X :: atom()
; ([Y]) -> Y when Y :: number().

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 143

6.8 Expressions

Some functions in Erlang are not meant to return; either because they define servers or because they are used to throw
exceptions, as in the following function:

my error(Err) -> erlang:throw({error, Err}).

For such functions, it is recommended to use the special no_r et ur n() type for their "return”, through a contract
of the following form:

-spec my error(term()) -> no_return().

6.8 Expressions

In this section, al valid Erlang expressions are listed. When writing Erlang programs, it is also allowed to use macro-
and record expressions. However, these expressions are expanded during compilation and are in that sense not true
Erlang expressions. Macro- and record expressions are covered in separate sections:

e Preprocessor
* Records

6.8.1 Expression Evaluation

All subexpressions are evaluated before an expression itself is evaluated, unless explicitly stated otherwise. For
example, consider the expression:

Exprl + Expr2

Expr 1 and Expr 2, which are also expressions, are evaluated first - in any order - before the addition is performed.

Many of the operators can only be applied to arguments of a certain type. For example, arithmetic operators can only
be applied to numbers. An argument of the wrong type causes abadar g runtime error.

6.8.2 Terms

The simplest form of expression is aterm, that is an integer, float, atom, string, list, map, or tuple. The return value
istheterm itself.

6.8.3 Variables

A variable is an expression. If a variable is bound to a value, the return value is this value. Unbound variables are
only alowed in patterns.

Variables start with an uppercase letter or underscore (). Variables can contain alphanumeric characters, underscore
and @

Examples:

X

Namel
PhoneNumber
Phone number

_Height

Variables are bound to values using pattern matching. Erlang uses single assignment, that is, a variable can only be
bound once.

The anonymous variableis denoted by underscore (_) and can be used when avariable is required but its value can
be ignored.

144 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.8 Expressions

Example:

[HI_1 = [1,2,3]

Variables starting with underscore (), for example, _Hei ght , are normal variables, not anonymous. They are
however ignored by the compiler in the sense that they do not generate any warnings for unused variables.

Example:
The following code:

member(_, []) ->
[1.

can be rewritten to be more readable:

member (Elem, []) ->
[1.

This causes a warning for an unused variable, El em if the code is compiled with the flag war n_unused_vars
set. Instead, the code can be rewritten to:

member(Elem, []1) ->
1.

Notice that since variables starting with an underscore are not anonymous, this matches:

{,}={1,2}

But thisfails:

{_N,_N} = {1,2}

The scope for avariableisits function clause. Variables bound in abranch of ani f , case, orr ecei ve expression
must be bound in all branches to have a value outside the expression. Otherwise they are regarded as 'unsafe' outside
the expression.

For thet r y expression variable scoping islimited so that variables bound in the expression are always 'unsafe’ outside
the expression.

6.8.4 Patterns

A pattern has the same structure as aterm but can contain unbound variables.
Example:

Namel

[H|T]

{error,Reason}
Patterns are allowed in clause heads, case andr ecei ve expressions, and match expressions.
Match Operator = in Patterns

If Patt er nl1 and Pat t er n2 are valid patterns, the following is also avalid pattern:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 145

6.8 Expressions

Patternl = Pattern2

When matched against aterm, both Pat t er n1 and Pat t er n2 are matched against the term. The idea behind this
feature isto avoid reconstruction of terms.

Example:

f({connect,From,To,Number,Options}, To) ->
Signal = {connect,From,To,Number,Options},

f(Signal, To) ->
ignore.

can instead be written as

f({connect, ,To, , } = Signal, To) ->
f(signal, To) ->

ignore.

String Prefix in Patterns
When matching strings, the following is avalid pattern:

f("prefix" ++ Str) -> ...

Thisis syntactic sugar for the equivalent, but harder to read:

f([$p,$r,$e,$F,$1,$x | Str]) -> ...

Expressions in Patterns
An arithmetic expression can be used within a pattern if it meets both of the following two conditions:

e |t usesonly numeric or bitwise operators.
» lItsvalue can be evaluated to a constant when complied.

Example:

case {Value, Result} of
{?THRESHOLD+1, ok} -> ...

6.8.5 Match
The following matches Expr 1, a pattern, against Expr 2:

Exprl = Expr2

If the matching succeeds, any unbound variable in the pattern becomes bound and the value of Expr 2 isreturned.
If the matching fails, abadmat ch run-time error occurs.
Examples:

146 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.8 Expressions

1> {A, B} = {answer, 42}.

{answer, 42}

2> A.

answer

3> {C, D} = [1, 2].

** exception error: no match of right-hand side value [1,2]

6.8.6 Function Calls

ExprF(Exprl,...,ExprN)
ExprM:ExprF(Exprl,...,ExprN)

In the first form of function calls, Expr M Expr F(Expr 1, . .., Expr N), each of Expr Mand Expr F must be an
atom or an expression that evaluates to an atom. The function is said to be called by using the fully qualified function
name. Thisis often referred to asaremote or external function call.

Example:
lists:keysearch(Name, 1, List)

In the second form of function calls, Expr F(Expr 1, . . ., Expr N) , Expr F must be an atom or evaluate to a fun.

If Expr F is an atom, the function is said to be called by using the implicitly qualified function name. If the
function Expr F is localy defined, it is called. Alternatively, if Expr F is explicitly imported from the Mmodule,
M Expr F(Expr1, ..., ExprN) iscaled. If Expr F is neither declared locally nor explicitly imported, Expr F
must be the name of an automatically imported BIF.

Examples:

handle(Msg, State)
spawn(m, init, [])

Exampleswhere Expr F isafun:

1> Funl = fun(X) -> X+1 end,
Funl(3).

4

2> fun lists:append/2([1,21, [3,4]).
[1,2,3,4]

3>

Notice that when calling alocal function, thereis a difference between using the implicitly or fully qualified function
name. The latter always refersto the latest version of the module. See Compilation and Code Loading and Function
Evaluation.

Local Function Names Clashing With Auto-Imported BIFs

If alocal function has the same name as an auto-imported BIF, the semanticsisthat implicitly qualified function calls
are directed to the locally defined function, not to the BIF. To avoid confusion, thereisacompiler directive available,
-conpi l e({no_auto_i nport, [F/ A]}),that makesaBIF not being auto-imported. In certain situations, such
acompile-directive is mandatory.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 147

6.8 Expressions

Before OTP R14A (ERTSversion 5.8), an implicitly qualified function call to afunction having the same name as
an auto-imported BIF always resulted in the BIF being called. In newer versions of the compiler, the local function
iscaled instead. Thisisto avoid that future additions to the set of auto-imported BIFs do not silently change the
behavior of old code.

However, to avoid that old (pre R14) code changed its behavior when compiled with OTP version R14A or later,
the following restriction applies: If you override the name of a BIF that was auto-imported in OTP versions prior
to R14A (ERTS version 5.8) and have an implicitly qualified call to that function in your code, you either need to
explicitly remove the auto-import using acompiler directive, or replace the call with afully qualified function call.
Otherwise you get a compilation error. See the following example:

-export([length/1,f/1]1).
-compile({no auto import,[length/1]}). % erlang:length/1 no longer autoimported

length([]) ->
0;
length([H|T]) ->
1 + length(T). %% Calls the local function length/1

f(X) when erlang:length(X) > 3 -> Calls erlang:length/1,

%%
%% which is allowed in guards

long.

The same logic applies to explicitly imported functions from other modules, as to locally defined functions. It is not
allowed to both import afunction from another module and have the function declared in the modul e at the sametime:

-export([f/1]).
-compile({no_auto import, [length/1]}). % erlang:length/1 no longer autoimported
-import(mod, [length/1]).

f(X) when erlang:length(X) > 33 -> %% Calls erlang:length/1,
%% which is allowed in guards

P

erlang:length(X); % Explicit call to erlang:length in body

f(Xx) ->
length(X). %% mod:length/1 is called

For auto-imported Bl Fsadded in Erlang/OTP R14A and thereafter, overriding the namewith alocal function or explicit
import is aways allowed. However, if the - conpi | e({no_aut o_i nport, [F/ A]) directiveis not used, the
compiler issues awarning whenever the function is called in the module using the implicitly qualified function name.

6.8.7 If

if
GuardSeql ->
Body1l;

GuardSegN ->

BodyN
end

148 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.8 Expressions

The branches of an i f -expression are scanned sequentially until a guard sequence Guar dSeq that evaluates to true
isfound. Then the corresponding Body (sequence of expressions separated by ',') is evaluated.

Thereturn value of Body isthereturn value of thei f expression.

If no guard sequence is evaluated astrue, ani f _cl ause run-time error occurs. If necessary, the guard expression
t r ue can be used in the last branch, asthat guard sequence is awaystrue.

Example:

is greater than(X, Y) ->
if
XY ->
true;
true -> % works as an 'else' branch
false
end

6.8.8 Case

case Expr of
Patternl [when GuardSeql] ->
Body1;

ﬁé%%ernN [when GuardSegN] ->
BodyN
end

The expression Expr is evauated and the patterns Pat t er n are sequentially matched against the result. If amatch
succeeds and the optional guard sequence Guar dSeq istrue, the corresponding Body is evaluated.

Thereturn value of Body isthe return value of the case expression.
If there is no matching pattern with atrue guard sequence, acase_cl ause run-time error occurs.
Example:

is valid signal(Signal) ->
case Signal of
{signal, What, From, To} ->
true;
{signal, What, To} ->
true;
_Else ->
false
end.

6.8.9 Send

Exprl ! Expr2

Sends the value of Expr 2 as a message to the process specified by Expr 1. The value of Expr 2 is aso the return
value of the expression.

Expr 1 must evaluate to a pid, a registered name (atom), or atuple { Nane, Node} . Nane is an atom and Node is
anode name, also an atom.

e |f Expr 1 evaluatesto a name, but this nameis not registered, abadar g run-time error occurs.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 149

6.8 Expressions

* Sending amessage to apid never fails, even if the pid identifies a non-existing process.
» Distributed message sending, that is, if Expr 1 evaluatesto atuple { Narme, Node} (or apid located at another
node), also never fails.

6.8.10 Receive

receive
Patternl [when GuardSeql] ->
Body1l;

PatternN [when GuardSegN] ->
BodyN
end

Receives messages sent to the process using the send operator (!). The patterns Pat t er n are sequentially matched
against the first message in time order in the mailbox, then the second, and so on. If a match succeeds and the optional
guard sequence Guar dSeq is true, the corresponding Body is evaluated. The matching message is consumed, that
is, removed from the mailbox, while any other messages in the mailbox remain unchanged.

The return value of Body isthereturn value of ther ecei ve expression.

r ecei ve never fails. The execution is suspended, possibly indefinitely, until a message arrives that matches one of
the patterns and with a true guard sequence.

Example:
wait for onhook() ->
receive
onhook ->
disconnect(),
idle();
{connect, B} ->
B ! {busy, self()},
wait for_onhook()
end.

Ther ecei ve expression can be augmented with a timeout:

receive
Patternl [when GuardSeql] ->
Body1l;

PatternN [when GuardSegN] ->
BodyN
after
ExprT ->
BodyT
end

Expr T is to evaluate to an integer. The highest allowed value is 16#FFFFFFFF, that is, the value must fit in 32
bits.r ecei ve. . af t er worksexactly asr ecei ve, except that if no matching message has arrived within Expr T
milliseconds, then BodyT is evaluated instead. The return value of Body T then becomes the return value of the
recei ve. . af t er expression.

Example:

150 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.8 Expressions

wait for_onhook() ->
receive

onhook ->
disconnect(),
idle();

{connect, B} ->
B ! {busy, self(
wait for onhook(

)},
)

after
60000 ->
disconnect(),
error()
end.

Itislegal tousear ecei ve. . af t er expression with no branches:

receive
after
ExprT ->
BodyT
end

This construction does not consume any messages, only suspends execution in the process for Expr T milliseconds.
This can be used to implement simple timers.

Example:

timer() ->
spawn(m, timer, [self()]).

timer(Pid) ->
receive
after
5000 ->
Pid ! timeout
end.

There are two special cases for the timeout value Expr T:

infinity
The processisto wait indefinitely for a matching message; thisis the same as not using atimeout. This can be
useful for timeout values that are calculated at runtime.

If there is no matching message in the mailbox, the timeout occurs immediately.

6.8.11 Term Comparisons

Exprl op Expr2

op Description
== Equal to
/= Not equa to

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 151

6.8 Expressions

=< Lessthan or equal to

< Lessthan

>= Greater than or equal to
> Greater than

Exactly equal to

=/= Exactly not equal to

Table 8.1: Term Comparison Operators.
The arguments can be of different datatypes. The following order is defined:

number < atom < reference < fun < port < pid < tuple < map < nil < list < bit string

ni | in the previous expression represents the empty list ([]), which is regarded as a separate type from | i st/ 0.
Thatiswhynil < |ist.

Listsare compared element by element. Tuplesare ordered by size, two tupleswith the same size are compared el ement
by element.

Maps are ordered by size, two maps with the same size are compared by keys in ascending term order and then by
valuesin key order. In maps key order integers types are considered |ess than floats types.

Atoms are compared using their string value, codepoint by codepoint.

When comparing an integer to afloat, the term with the lesser precision is converted into the type of the other term,
unless the operator is one of =: = or =/ =. A float is more precise than an integer until al significant figures of the
float are to the left of the decimal point. This happens when the float is larger/smaller than +/-9007199254740992.0.
The conversion strategy is changed depending on the size of the float because otherwise comparison of large floats
and integers would lose their transitivity.

Term comparison operators return the Boolean value of the expression, t r ue or f al se.
Examples:

1> 1==1.0.

true

2> 1=:=1.0.

false

3> 1> a.

false

4> #{c => 3} > #{a == 1, b => 2}.

false

4> #{a = 1, b => 2} == #{a => 1.0, b => 2.0}.
true

6.8.12 Arithmetic Expressions

op Expr
Exprl op Expr2

152 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.8 Expressions

Operator Description Argument Type
+ Unary + Number
- Unary - Number
+ number
- Number
* Number
/ Floating point division Number
bnot Unary bitwise NOT Integer
div Integer division Integer
rem Integer remainder of X/Y Integer
band Bitwise AND Integer
bor Bitwise OR Integer
bxor Arithmetic bitwise XOR Integer
bsl Arithmetic bitshift left Integer
bsr Bitshift right Integer

Table 8.2: Arithmetic Operators.

Examples:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 153

6.8 Expressions

1> +1.
1
2> -1.
-1
3> 1+1.
2
4> 4/2.
2.0
5> 5 div 2.
2
6> 5 rem 2.
1
7> 2#10 band 2#01.
0
8> 2#10 bor 2#01.
3
9> a + 10.
** exception error: an error occurred when evaluating an arithmetic expression
in operator +/2
called as a + 10
10> 1 bsl (1 bsl 64).
** exception error: a system limit has been reached
in operator bsl/2
called as 1 bsl 18446744073709551616

6.8.13 Boolean Expressions

op Expr

Exprl op Expr2

Operator Description

not Unary logical NOT
and Logical AND

or Logical OR

xor Logical XOR

Table 8.3: Logical Operators.

Examples:

1> not true.
false
2> true and false.
false
3> true xor false.
true
4> true or garbage.
** exception error: bad argument
in operator or/2
called as true or garbage

154 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.8 Expressions

6.8.14 Short-Circuit Expressions

Exprl orelse Expr2
Exprl andalso Expr2

Expr 2 isevaluated only if necessary. That is, Expr 2 isevauated only if:

e Exprlevauatestof al seinanorel se expression.

or

e Exprlevauatestot r ue inanandal so expression.

Returns either the value of Expr 1 (thatis, t rue or f al se) or thevalue of Expr 2 (if Expr 2 is evauated).
Example 1:

case A >= -1.0 andalso math:sqrt(A+1) > B of

Thisworkseven if Aislessthan- 1. 0, sincein that case, mat h: sqrt/ 1 is never evaluated.

Example 2:

OnlyOne = is atom(L) orelse
(is list(L) andalso length(L) == 1),

From Erlang/OTP R13A, Expr 2 isno longer required to evaluate to a Boolean value. As a consequence, andal so
and or el se are now tail-recursive. For instance, the following function is tail-recursive in Erlang/OTP R13A and
later:

all(Pred, [Hd|Tail]l) ->

Pred(Hd) andalso all(Pred, Tail);
all(_, [1) ->

true.

6.8.15 List Operations

Exprl ++ Expr2
Exprl -- Expr2

The list concatenation operator ++ appends its second argument to its first and returns the resulting list.

The list subtraction operator - - produces a list that is a copy of the first argument. The procedure is a follows: for
each element in the second argument, the first occurrence of this element (if any) isremoved.

Example:

1> [1,2,3]1++[4,5].

[1,2,3,4,5]
2> [1,2,3,2,1,2]1--[2,1,2].
[3,1,2]

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 155

6.8 Expressions

The complexity of A - - Bisproportional tol engt h(A) *| engt h(B) . That is, it becomes very slow if both
Aand B arelong lists.

6.8.16 Map Expressions

Creating Maps

Constructing a new map is done by letting an expression K be associated with another expression V:
#{ K=V}

New maps can include multiple associations at construction by listing every association:
#{ KL => V1, .., Kn => Vn }

An empty map is constructed by not associating any terms with each other:
#{}

All keys and values in the map are terms. Any expression is first evaluated and then the resulting terms are used as
key and value respectively.

Keys and values are separated by the => arrow and associations are separated by acomma, .

Examples:
MO = #{}, % empty map
M1 = #{a => <<"hello">>}, % single association with literals
M2 = #{1 => 2, b => b}, % multiple associations with literals
M3 = #{k == {A,B}}, % single association with variables
M4 = #{{"w", 1} => f()}. % compound key associated with an evaluated expression

Here, A and B are any expressions and M) through M4 are the resulting map terms.
If two matching keys are declared, the latter key takes precedence.
Example:

1> #{1 => a, 1 => b}.
#{1 => Db }

2> #{1.0 => a, 1 => b}.
#{1 == b, 1.0 => a}

The order in which the expressions constructing the keys (and their associated values) are evaluated is not defined.
The syntactic order of the key-value pairsin the construction is of no relevance, except in the recently mentioned case
of two matching keys.

Updating Maps
Updating a map has asimilar syntax as constructing it.

An expression defining the map to be updated, is put in front of the expression defining the keys to be updated and
their respective values:

M#{ K => V }

Here Mis aterm of type map and K and V are any expression.

156 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.8 Expressions

If key K does not match any existing key in the map, a new association is created from key K to value V.

If key K matches an existing key in map M its associated value is replaced by the new value V. In both cases, the
evaluated map expression returns a new map.

If Mis not of type map, an exception of type badmap isthrown.
To only update an existing value, the following syntax is used:

M#{ K :=V }

Here Mis aterm of type map, V is an expression and K is an expression that evaluates to an existing key in M

If key K does not match any existing keysin map M an exception of typebadar g istriggered at runtime. If amatching
key K is present in map M its associated value is replaced by the new value V, and the evaluated map expression
returns a new map.

If Mis not of type map, an exception of type badnap isthrown.

Examples:
MO = #{},
M1 = MO#{a => 0},
M2 = Ml#{a => 1, b = 2},
M3 = M2#{"function" => fun() -> f() end},
M4 = M3#{a := 2, b :=3}. % 'a' and 'b' was added in "M1° and "M2".

Here MD isany map. It followsthat ML .. M4 are maps as well.
More Examples:

1> M = #{1 => a}.

#{1 => a }

2> M#{1.0 => b}.

#{1 => a, 1.0 => b}.

3> M#{1 := b}.

#{1 => b}

4> M#{1.0 := b}.

** exception error: bad argument

Asin construction, the order in which the key and value expressions are evaluated is not defined. The syntactic order
of the key-value pairs in the update is of no relevance, except in the case where two keys match. In that case, the
latter value is used.

Maps in Patterns
Matching of key-value associations from mapsis done as follows:
#{K:=V3}=M

Here Mis any map. The key K must be an expression with bound variables or literals. V can be any pattern with either
bound or unbound variables.

If the variable V is unbound, it becomes bound to the value associated with the key K, which must exist in the map M
If the variable V is bound, it must match the value associated with Kin M

Example:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 157

6.8 Expressions

1> M = #{"tuple" => {1,2}}.
#{"tuple" => {1,2}}

2> #{"tuple" := {1,B}} = M.
#{"tuple" => {1,2}}

3> B.

2.

Thisbinds variable B to integer 2.
Similarly, multiple values from the map can be matched:

#{ KL :=Vl, .., Kn :=Vn } =M
HerekeysK1 .. Kn areany expressionswith literals or bound variables. If all keysexistin map M all variablesin

V1 .. Vnismatched to the associated values of their respective keys.
If the matching conditions are not met, the match fails, either with:
* A badnmat ch exception.

Thisisif it is used in the context of the match operator asin the example.
e Or resulting in the next clause being tested in function heads and case expressions.

Matching in maps only alows for : = as delimiters of associations.
The order in which keys are declared in matching has no relevance.
Duplicate keys are allowed in matching and match each pattern associated to the keys:
#{ K :=Vl, K:=V2} =M
Matching an expression against an empty map literal, matches its type but no variables are bound:
#{} = Expr
This expression matches if the expression Expr is of type map, otherwise it fails with an exception badnat ch.
Matching Syntax
Matching of literals as keys are allowed in function heads:

%% only start if not started
handle call(start, From, #{ state := not started } =S) ->

{reply, ok, S#{ state := start }};

%% only change if started
handle call(change, From, #{ state := start } = S) ->

{reply, ok, S#{ state := changed }};

Maps in Guards
Maps are allowed in guards as long as all subexpression